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We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields.
This model is formulated using Langevin dynamics, which allows an analytic study using methods from
statistical and many-body physics. In particular we construct a diagrammatic framework within which to study
cell-cell interactions. In the mean-field limit, where statistical correlations between cells are neglected, we
recover the deterministic Keller-Segel equations. Within exact perturbation theory in the chemotactic coupling
e, statistical correlations are non-negligible at large times and lead to a renormalization of the cell diffusion
coefficient DR—an effect that is absent at mean-field level. An alternative closure scheme, based on the
necklace approximation, probes the strong coupling behavior of the system and predicts thatDR is renormal-
ized to zero at a critical value ofe, indicating self-localization of the cell. Stochastic simulations of the model
give very satisfactory agreement with the perturbative result. At higher values of the coupling simulations
indicate thatDR,e−2, a result at odds with the necklace approximation. We briefly discuss an extension of our
model, which incorporates the effects of short-range interactions such as cell-cell adhesion.
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I. INTRODUCTION

Cell movement via chemotaxis is a fundamental process
in both unicellular and multicellular organisms[1]. Chemot-
axis is broadly defined as movement in response to a chemi-
cal gradient. Microorganisms use chemotaxis to locate food
sources, avoid obstacles, and in some cases to aggregate with
like cells to form fruiting bodies[2,3]. Such aggregating cel-
lular systems have been of intense theoretical interest for
many years, and have typically been modeled using coupled
differential equations, most notably the Keller-Segel(KS)
model and its variants[4–7]. More recently theoretical atten-
tion has been focused on other, more complex, forms of
chemotaxis, typically in higher organisms; examples being
intercellular organization in the early embryo[8–10], and the
use of chemotaxis for specific location of targets, such as
leucocytes locating bacteria[11] and sperm locating ova
[12].

From a statistical physics viewpoint it is natural to inves-
tigate the role of fluctuations during chemotaxis in multicel-
lular systems. The KS model and its variants have the form
of mean-field type models and, according to the conventional
wisdom from critical phenomena, will not be able to address
such questions[13]. Some groups have been probing fluctua-
tions implicitly by constructing computer algorithms of cell
movement and cell interactions; in particular, we mention the
work of Drasdoet al. [14–16], who have developed Monte
Carlo simulations for a range of multicellular processes(e.g.,
tumor growth and wound healing), and Glazieret al., who
have used an ingenious form of the Potts model(in which a
given spin orientation identifies a unique cell) to model a
variety of cellular systems[17–19].

In this paper we address the question of chemotactic fluc-
tuations from an analytic viewpoint by introducing a stochas-
tic model of cell movement which is amenable to calcula-
tion. A quantitative understanding of fluctuations in cell-cell
interactions is necessary in order to uncover the constraints

within which the evolution of multicellularity has proceeded.
The biological insight afforded by such an understanding is
the long-term goal of this work. In this introductory paper we
aim to present a comprehensible theoretical description of
our model and its preliminary analysis.

The outline of the paper is as follows. In the next section
we define the model, which is written in terms of Langevin
dynamics. We show that the equations of motion for prob-
ability distributions have an infinite hierarchy. In Sec. III we
construct a diagrammatic representation of this hierarchy
which greatly simplifies both analysis and interpretation of
statistical fluctuations. In Sec. IV we enforce a mean-field
truncation of the model. We show that the resulting model
corresponds precisely to the KS equations, which provides a
useful benchmark for our theory. In Sec. V we proceed to
account for fluctuations systematically within perturbation
theory—this is conveniently handled using diagrammatic
methods. We present results to second order, and show that
fluctuations(via cell-cell correlations) lead to a renormaliza-
tion of the cell diffusion constant. In Sec. VI we go beyond
perturbation theory using the simplest approximate resum-
mation of the diagrams—namely, the necklace(or Hartree-
Fock) approximation. This scheme predicts both a renormal-
ization of the diffusion constant and, for larger couplings, a
self-localization transition. We test these predictions, in Sec.
VII, by means of a careful numerical simulation of the model
in one dimension. The perturbative results are quantitatively
confirmed, but the self-localization transition is not observed.
We emphasize that our numerical algorithm is very efficient
in describing large numbers of cells in higher dimensions,
since the algorithm does not require an underlying grid and
its speed is thus relatively insensitive to the dimensionality
of space. Then, in Sec. VIII, we briefly discuss some exten-
sions of our model which are necessary to describe short-
range adhesive interactions between cells. We summarize our
results and discuss future work in Sec. IX.
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II. THE BASIC MODEL

As mentioned in the Introduction, we are interested in the
statistical correlations between cells which share a chemical
signaling field. The simplest way to investigate this is to
construct a model in which the cells, perforce, are described
on an individual basis, but in which the chemical signals are
treated in the continuum limit. For all but the lowest chemi-
cal concentrations, this appears to be a reasonable length-
scale separation to make.

We considerN identical cells moving in ad-dimensional
space. The position of celli is denoted byxi. Each cell emits
a chemical signal with rateb, and chemotactically responds
to the gradient of the chemical field with constant chemotac-
tic susceptibilitya. The concentration of the chemical field is
denoted byfsx ,td. The molecules comprising the chemical
field have diffusion constantD1 and a degradation ratel. In
the absence of the chemical field, the cells perform pure
random walks with diffusion constantD0. This process of
emitting and responding to chemical signals will encourage
aggregation fora.0 (“positive chemotaxis”) and mutual re-
pulsion for a,0 (“negative chemotaxis”). Although we
place no restriction on the sign ofa we will generally have
in mind a.0 since this allows us to compare our results to
the well-studied case of cell aggregation.

Our model can be written down mathematically in the
form of a Langevin equation[20]. We have for the cells

ẋi = ji + a=if, s1d

where the gradient off is evaluated at the current position of
cell i. The noiseji is responsible for the random walk aspect
of the cell’s dynamics, and for simplicity is sampled from a
Gaussian distribution with zero mean and correlator

kji
astdj j

bst8dl = 2D0da,bdi,jdst − t8d, s2d

wherea andb refer to spatial components of the noise vec-
tors. The chemical concentration field is modeled by a diffu-
sion equation of the form

]tf = D1¹
2f − lf + bo

i=1

N

d„x − xistd…. s3d

A similar model in which both the cells and the chemical
molecules are treated as discrete entities has been proposed
by Stevens[21]. This model formulation is easily extended
to accommodate multiple signaling fields and cell types. Re-
garding the latter, one can introduce different cell phenotypes
by allowing parameters such asa, b, andD0 to depend on
the cell indexi. We refer the reader to Fig. 1 for a schematic
representation of chemical signaling between different cell
types. For simplicity we assume a population of identical
cells in the remainder of this paper.

The Langevin formulation for cell dynamics given above
is attractive in that it allows intuitive model building, since
one is considering equations of motion for each cell. Further-
more, it allows optimized computer algorithms to be con-
structed(see Sec. VII). The Langevin formulation is not,
however, the most convenient representation of the model for
the purposes of analytic calculations. In this case one can
proceed more easily by deriving differential equations for the

single-cell and multicell probability distributions.
We define the single-cell probability distribution via

Pisx,td = kd„x − xistd…l, s4d

where the angled brackets indicate an average over the noise.
In a similar manner one defines the multicell distributions,
e.g., the two-cell probability distribution

Pi,jsx,t;x8,t8d = kd„x − xistd…d„x8 − x jst8d…l. s5d

In order to find an equation of motion forPi we first
express the concentration fieldf in terms of the cell paths.
This is accomplished by formally integrating Eq.(3), the
result being

fsx,td = bE ddx8E
0

t

dt8Glsx − x8,t − t8do
j

d„x8 − x jst8d…,

s6d

where we have defined the Green function for the chemical
diffusion equation,

Glsx,td = s4pD1td−d/2expF−
x2

4D1t
− ltG . s7d

We have imposed an initial condition of zero concentration
field. This choice is made on the grounds of simplicity. As a
technical point, it is helpful to leave thed function intact in
Eq. (6).

We now consider the time derivative ofPi. From the defi-
nition (4) above we have

]tPisx,td = − = · kẋistdd„x − xistd…l

= − = · kjid„x − xistd…l − a = · k=ifd„x − xistd…l.

s8d

FIG. 1. Schematic diagram of cell-cell interactions. In(a) cells
of one type release and respond to a chemoattractant denoted byf.
Cells i and j could, for instance, represent myxobacteria. In(b) we
illustrate a more complex scenario of two cell types interacting via
chemical signals, with concentration fields denoted byf and c.
Cells i and j could, for instance, represent a bacteriumsid attempt-
ing to evade predation by an amoebas jd, with field f representing
a chemoattractant secreted inadvertently by the bacteria(allowing
the amoeba to locate them), and c representing a mutual
chemorepulsive signal between amoebas(j and l) allowing them to
feed efficiently. The calculations in the present paper will be re-
stricted to a single cell type(a), although the many-body formula-
tion is able to accommodate multiple cell types and multiple signal-
ing fields.
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The first term on the right-hand side of Eq.(8) is the
standard term that appears in deriving the Fokker-Planck
equation for a pure random walk and is not affected by the
presence of the chemical field. It can be evaluated by stan-
dard methods[20] to give a term proportional to the Laplac-
ian of Pi. The second term may be evaluated by inserting the
formal solution(6) and rewriting the average overd func-
tions in terms of the two-cell distribution function(5). One
then has

]tPi = D0¹
2Pi − e = ·E ddx8E

0

t

dt8f=Glsx − x8,t − t8dg

3 o
j

Pi,jsx,t;x8,t8d,

s9d

where we have introduced the “chemotactic coupling”e
=ab.

The chemical field introduces statistical correlations be-
tween the cells(via the Green functionGl). Thus, the one-
cell distribution function requires knowledge of the two-cell
distribution. Naturally, the equation of motion for the two-
cell distribution will involve the three-cell distribution and so
on, yielding an infinite hierarchy of distribution functions
typical of interacting many-body systems[22]. Note that
even for a single cell there will be nontrivial statistical cor-
relations(contained withinPi,i) due to past fluctuations of
the cell being mediated through the chemical field and affect-
ing the same cell at future times. We shall see that such
autochemotactic effects play an important role in the long-
time dynamics of the system.

III. STATISTICAL CORRELATIONS
AND DIAGRAMMATICS

Given the complex structure of the hierarchy of distribu-
tion functions, it is desirable to represent the theory in terms
of diagrams. This allows a compact means by which to ex-
press the theory, and also aids interpretation of the statistical
correlations which are central to the cell dynamics. We refer
the reader to Appendix A for a brief overview of the dia-
grammatic techniques used in this paper.

As is typically the case with many-body theories, it is
convenient to develop a diagrammatic representation in Fou-
rier space. Thus we introduce the Fourier transforms

P̃isk,td =E ddx Pisx,tdeik·x s10d

and

P̃i,jsk,t;k8,t8d =E ddx ddx8Pi,jsx,t;x8,t8deik·x+ik8·x8.

s11d

On taking the Fourier transform of Eq.(9) we find

]tP̃isk,td = − D0k
2P̃isk,td + eE

0

t

dt8E dk8sk ·k8d

3G̃lsk8,t − t8do
j

P̃i,jsk − k8,t;k8,t8d, s12d

wheredk is shorthand for the wave vector volume element
ddk/ s2pdd.

We have yet to discuss the initial condition for the cells.
In this paper we choose perhaps the simplest, namely, that
the cells are all initially confined to some small region. We

therefore takePisx ,0d=dsxd which corresponds toP̃isk ,0d
=1. As time proceeds, the cells will attempt diffusion, which
will be, to some degree, balanced by chemotactic confine-
ment of the cells(for e.0) due to their production of the
chemical field. Many other initial conditions are of course
possible depending on the particular biological conditions of
interest. It is sometimes convenient to consider random ini-
tial conditions(RIC), since these allow a convenient defini-
tion of cell propagators. We shall not explicitly consider RIC
here, but they are easily included in the diagrammatic expan-
sion described below.

Equation(12) may now be integrated forward in time to
give

P̃isk,td = G̃0sk,td + eE
0

t

dt8G̃0sk,t − t8d

3E
0

t8
dt9E dk8sk ·k8dG̃lsk8,t8 − t9d

3o
j

P̃i,jsk − k8,t8;k8,t9d, s13d

where we have introduced the Green functionG0, which is
appropriate for a cell performing a pure random walk with
diffusion constantD0:

G0sx,td = s4pD0td−d/2 expF−
x2

4D0t
G . s14d

In Fig. 2 we represent Eq.(13) in terms of diagrams. Time
flows from right to left, and each line carries a wave vector
(not shown explicitly). Wave vectors are conserved at verti-
ces due to spatial translational invariance. The heavy line

with index i representsP̃i, while the faint line represents the

free cell propagatorG̃0. The Green function(or propagator)
for the chemical field,G̃l, is represented by a wavy line. The
intersection point of the wavy line with the cell propagator
represents the chemotactic response and has a weighte,
along with an additional factor ofk1·k2 wherek1 andk2 are,
respectively, the wave vectors associated with the propagator
for the chemical field and the outgoing free cell propagator.

FIG. 2. Diagrammatic representation of Eq.(13): the single-cell

distribution P̃i in terms of the two-cell distributionP̃i,j.
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Finally, the “V-shaped” solid line with indicesi and j repre-

sents the two-cell distribution functionP̃i,j. In order to pro-
ceed it is necessary to derive an equation of motion for this
two-cell distribution function. We must be careful to distin-
guish between the two casesi = j and i Þ j .

Consider firstPi,isx ,t ;x8 ,t8d, with t. t8. Following a pro-
cedure identical to that used in the derivation of Eq.(9), we
find an equation of motion forPi,i. We Fourier transform this
equation and integrate the time variablet back to t8. This
leads us to

P̃i,isk,t;k8,t8d = G̃0sk,t − t8dP̃isk + k8,t8d

+ eE
t8

t

dt9G̃0sk,t − t9dE
0

t9
dt-E dk9sk ·k9d

3G̃lsk9,t9 − t-d

3o
l

P̃i,i,lsk − k9,t9;k8,t8;k9,t-d. s15d

This equation is illustrated diagrammatically in Fig. 3(a).
The dashed line is simply a bookkeeping device fixing its
two ends at identical times(in this caset8). Note, the internal
time t- may be less than or greater than the external timet8,
but both are strictly less than the internal timet9. The careful
treatment of causality such as this is crucial for generating
correct diagrams in perturbation theory, as we shall see in
Sec. V.

We now turn toPi,jsx ,t ;x8 ,t8d with i Þ j and t. t8. Fol-
lowing an analogous procedure to that used forPi,i we arrive
at the equation

P̃i,jsk,t;k8,t8d = G̃0sk,t − t8dP̃i,jsk,t8;k8,t8d

+ eE
t8

t

dt9G̃0sk,t − t9dE
0

t9
dt-E dk9sk ·k9d

3G̃lsk9,t9 − t-d

3o
l

P̃i,j ,lsk − k9,t9;k8,t8;k9,t-d. s16d

This equation is illustrated diagrammatically in Fig. 3(b). We
must treat one more two-cell distribution, namely, the equal-
time function Pi,jsx ,t ;x8 ,td with i Þ j . The same procedure
as outlined above(with the time t integrated back to the
initial time zero) yields

P̃i,jsk,t;k8,td = G̃0sk,tdG̃0sk8,td + eE
0

t

dt8G̃0sk,t − t8d

3G̃0sk8,t − t8dE
0

t8
dt9E dk9sk ·k9dG̃l

3 o
l

fP̃i,j ,lsk − k9,t8;k8,t8;k9,t9d

+ P̃i,j ,lsk,t8;k8 − k9,t8;k9,t9dg. s17d

This equation is illustrated diagrammatically in Fig. 3(c).
The diagrammatic relations in Figs. 3(a)–3(c) are exact

and encapsulate the two-cell interactions in terms of three-
cell interactions. It is relatively straightforward to express
these three-cell interactions in terms of higher-order pro-
cesses. Care must be taken to distinguish cases of coincident
cell indices, and coincident times. We shall not pursue this
here. The relations in Fig. 3 are sufficient to yield useful
insight into statistical correlations, and to generate perturba-
tive corrections toPi up to and including second order in the
chemotactic couplinge. Before proceeding with such an
analysis, let us first gain some intuition by studying the sys-
tem from a mean-field perspective.

IV. THE DETERMINISTIC LIMIT

Past models of chemotaxis have typically been formulated
in terms of nonlinear coupled partial differential equations
(written in terms of the cell density and chemical concentra-
tion), based on deterministic dynamics; the canonical ex-
ample being the well-known KS equations[4,5]. Here, we
shall attempt to make contact with such models by imposing
a mean-field approximation on our model, at the level of Eq.
(9).

The two-cell distribution function can be exactly rewritten
in terms of a conditional probability distribution, viz.,

Pi,jsx,t;x8,t8d = Pi u jsx,tux8,t8dPjsx8,t8d. s18d

The mean-field approximation may now be stated clearly as

Pi u jsx,tux8,t8d = Pisx,td ∀ j , s19d

namely, we assume that the probability of finding celli at
positionx at time t is statistically independent of the previ-
ous positions of all the cells.

FIG. 4. The diagrammatic analog of Fig. 2 under the mean-field
approximation—the two-cell distribution is expressed as the prod-
uct of two one-cell distributions. Iteration of this equation yields an
infinite set of tree-level diagrams.

FIG. 3. Diagrammatic representations of the two-cell distribu-

tion P̃i,jsk ,t ;k8 ,t8d for (a) i = j , (b) i Þ j with t. t8, and (c) i Þ j
with t= t8. These diagrammatic equations correspond to Eqs.
(15)–(17), respectively.
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Then from (18), Pi,j =PiPj and it is a simple matter to
rewrite Eq.(9) in the form

]tPi = D0¹
2Pi − e = · Pisx,td =E ddx8E

0

t

dt8

3Glsx − x8,t − t8do
j

Pjsx8,t8d. s20d

This equation(in Fourier space and integrated forward in
time) is represented diagrammatically in Fig. 4. The equation
for Pi is self-consistent, and on iteration will yield “tree dia-
grams.”

We now show that Eq.(20) is identical to the KS equa-
tions. First we define the density of cells via

rsx,td = o
i

Pisx,td. s21d

Summing Eq.(20) over the cell index we obtain a partial
differential equation for the density:

]tr = D0¹
2r − a = · r = F, s22d

where the ensemble averaged chemical fieldFsx ,td is de-
fined via

Fsx,td = bE ddx8E
0

t

dt8Glsx − x8,t − t8drsx8,t8d s23d

(we remind the reader thate=ab). Given the definition of
the Green functionGl it is clear thatF satisfies the partial
differential equation

]tF = D1¹
2F − lF + br. s24d

The coupled equations(22) and (24) for the cell density
and chemical concentration are identical to the KS equations.
The KS equations have previously been rigorously derived,
for a range of coupling strengths, from a stochastic model
similar to ours, in which both the cells and the chemical
signaling molecules are described in a discrete fashion. The
derivation relies on the limit of infinite number of particles to
be taken[21]. The derivation given here is complementary to
this in that it highlights how the KS equations arise from a
mean-field approximation in which statistical correlations
between cells are neglected.

V. PERTURBATION THEORY

The mean-field truncation given in Eq.(19) is an uncon-
trolled approximation. It is desirable to probe the importance
of fluctuations in a systematic manner. In this section we
shall develop an exact treatment of statistical correlations
between cells within a perturbative scheme. Our perturbative
parameter will be the chemotactic couplinge, which is pro-
portional to both the strength of response of the cells to the
chemical field, and to the rate of production of the chemical.

With the aid of the exact diagrammatic relations in Fig. 3

we can generate a perturbative expansion forP̃isk ,td to sec-
ond order ine. This is achieved by replacing all three-cell
diagrams by their zeroth-order form(corresponding to a sys-

tem of N noninteracting cells performing random walks).
The only subtlety relates to coincident cell indices, and sub-
sequent time ordering. Due to this, the three-cell diagram can
take several different forms, which are shown in Fig. 5.
Again, the dashed lines are simply a bookkeeping device
reminding us that the ends of a given dashed line are to be
taken at equal times. We shall typically contract the dashed
lines, in the loop expansion, for a more compact representa-
tion.

On iterating the single-cell equation in Fig. 2 with the aid
of the two-cell equations in Fig. 3 we can insert the zeroth-
order three-cell terms from Fig. 5 where appropriate to gen-
erate a perturbative series up to and including second order
in e. Two diagrams appear at first order, and 12 diagrams at
second order. These are illustrated in Fig. 6.

The diagrams can be classified in different groups:(i) tree
diagrams,(ii ) diagrams which renormalize the cell propaga-
tor, (iii ) diagrams which renormalize the chemotactic re-
sponse,(iv) diagrams corresponding to new, higher-order
nonlinear processes, and(v) diagrams which, through itera-
tion, arise from groups(i)–(iv). Referring to Fig. 6, the one-
loop diagramsa andb are in classes(i) and(ii ), respectively.
Of the 12 two-loop diagrams,c, d, ande are in class(v); f
andg are in class(i); h, i, and j are in class(ii ); k, l, andm
are in class(iii ); and finally, diagramn is in class(iv), and

FIG. 5. The possible zeroth-order forms for

P̃i,j ,lsk ,t ;k8 ,t8 ;k9 ,t9d.

FIG. 6. Diagrams contributing toP̃iskd up to and including sec-
ond order ine.
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represents a new interaction in which “autoresponse” is me-
diated via a second cell. Many of these diagrams are familiar
from the study of interacting Fermi systems[23,24].

In this section, we shall focus on the second class of dia-
grams and investigate the effects of statistical fluctuations on
the “renormalization” of the diffusion constant for a given
cell. In Fig. 7 we show those diagrams which renormalize
the cell propagator, which we denote by a double line and the
symbolGR. The single-cell propagator is most easily defined
by generalizing to random initial conditions. One writes

G̃Rsk,td =F dP̃isk,td

dP̃isk,0d
G

IC

, s25d

where the square brackets indicate an average over the en-
semble of random uncorrelated initial cell positions. Dia-
grammatically one can represent the random cell position by
a cross which terminates each cell propagator att=0. By

differentiating with respect toP̃isk ,0d and averaging, it is
easy to see that we retain only those diagrams which renor-
malize the cell propagator.(This propagator is precisely

equal toP̃i for the case of a system containing only one cell
with the initial conditions specified earlier, and in which the
only interactions are autochemotactic.) We shall describe the
evaluation of the single one-loop diagram in Fig. 7 in some
detail. Technical details relating to the(rather more difficult)
evaluation of the two-loop diagrams can be found in Appen-
dix B, and are restricted to the case ofd=1.

We write

G̃Rsk,td = G̃R
s0dsk,td + eG̃R

s1dsk,td + e2G̃R
s2dsk,td + Ose3d,

s26d

whereG̃R
s0d=G̃0=exps−D0k

2td. The one-loop diagram in Fig.
7 provides the contribution

G̃R
s1dsk,td =E

0

t

dt8E
0

t8
dt9E dk1k ·k1G̃0sk,t − t8d

3G̃0sk − k1,t8 − t9dG̃lsk1,t8 − t9dG̃0sk,t9d.

s27d

It turns out that so long asl.0 the perturbative corrections

to G̃R are finite in the long-time regime and serve to renor-
malize the propagator. We shall quantify this by studying the
renormalization of the diffusion constant. There are also cor-
rections which distort the Gaussian nature of the propagator,
but we do not consider these here. For the casel=0 in low

dimensionssdø2d, the perturbative corrections are not small
in the long-time regime signaling a qualitative change of
behavior away from diffusion. Here we exclusively focus on
l.0, which is the case of most biological relevance.

It is most straightforward to study renormalization of the
diffusion constant by the following construction. First, we
Laplace transform in time, i.e.,

ĜRsk,sd ; LsutfG̃Rsk,tdg =E
0

`

dt e−stG̃Rsk,td. s28d

Then at leading order we have

ĜR
0sk,sd = ss+ D0k

2d−1. s29d

Defining the renormalized diffusion constant via the property
that kx2lPi

=2dDRt for large times, we have

DR ; lim
t→`

1

2dt
E ddx x2Pisx,td. s30d

It is straightforward to show from Eq.(30) that an equivalent
definition is

DR ; −
1

2d
lim
s→0

s2f¹k
2ĜRsk,sdgk=0. s31d

It is convenient to introduce the notation corresponding to
Eq. (26):

DR = DR
s0d + eDR

s1d + e2DR
s2d + Ose3d, s32d

where, naturally,DR
s0d=D0.

To proceed, we Laplace transform Eq.(27), and after in-
voking the convolution theorem(or Faltung theorem[25])
we have

ĜR
s1dsk,sd = Ĝ0sk,sd2E dk1k ·k1LsutfG̃0sk − k1,tdG̃lsk1,tdg

= Ĝ0sk,sd2E dk1
k ·k1

fs+ l + D1k1
2 + D0sk − k1d2g

.

s33d

From the definition of the diffusion constant given in Eq.
(31) we find

DR
s1d = −

2D0

d
E dk1

k1
2

fl + sD0 + D1dk1
2g2 . s34d

This integral is finite ford,2, but requires a high-wave-
vector (“ultraviolet”) cutoff L for dù2. This uv cutoff cor-
responds to a short-distance cutoff in real space, such as the
cell diameter, which is assumed to be zero in our model. We
shall discuss short-range interactions between cells in more
detail in Sec. VIII. On evaluating the integral in Eq.(34) we
have the one-loop result:

DR = D0f1 − eRsdd + O„eRsdd2
…g. s35d

The d-dependent dimensionless couplings are defined via

ẽs1d =
e

2l1/2sD0 + D1d3/2, s36d

FIG. 7. Diagrams contributing to the renormalization of the cell
propagator, up to and including second order ine. The two-loop
diagrams(1), (2), and (3) are referred to in the main text as the
“necklace,” “rainbow,” and “crossover” diagrams, respectively.
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ẽs2d =
2pe

sD0 + D1d2 ln L̃, s37d

ẽs3d =
8pel1/2L̃

3sD0 + D1d5/2, s38d

where

L̃ = S sD0 + D1d
l

D1/2

L. s39d

Thus, we see that the diffusion constant is renormalized in all
dimensions to one loop in perturbation theory. The underly-
ing process responsible for this is autochemotaxis, namely,
each individual cell responding to the local chemical field in
its environment produced by that particular cell. In tune with
one’s intuition, the renormalized diffusion constant is re-
duced for positive chemotactic response in which the cells
are attracted to their previous emitted signal(i.e., the case
e.0).

It is interesting to note that the one-loop tree diagram
(diagram a in Fig. 6) gives a contribution toPi which is
smaller by a factor ofsltd−1/2 and thus does not renormalize
the single-cell probability distribution in the long-time re-
gime. In other words, the mean-field theory(which corre-
sponds to the KS model) has a long-time dynamics of pure
diffusion, with DR=D0, within a perturbative treatment. This
is expected to break down for strong coupling, where one
finds the collapse or “blowup” phases[6].

We turn briefly to the two-loop results. The motivation for
studying higher-order diagrams is to investigate whether the
renormalization of the diffusion constant is still a valid con-
cept(meaning that the second-order terms yield finite contri-
butions fort→`), and if so, whether the sign of the correc-
tion is positive or negative. If the latter is true, this may
indicate a collapse transition, in whichDR becomes zero for
some finite value ofe. We shall, in fact, find that the second-
order contribution toDR is always positive, hinting that the
collapse transition may not occur at all for the discrete cell
system. We restrict our analysis of the two-loop corrections
to d=1, and so we use the shorthandẽ= ẽs1d. The dimension
d=1 is that in which fluctuations play the strongest role, and
so, from the point of view of deviations from mean-field
theory, is expected to be the most interesting case.

There are three two-loop diagrams which can renormalize
DR, as illustrated in Fig. 7. The calculation of their individual
contributions is presented in Appendix B. The “necklace”
diagram yields precisely zero contribution, the “rainbow”
diagram yields a contribution which is either positive or
negative according to the relative sizes ofD0 andD1, and the
“crossover” diagram yields a contribution which is always
positive. Interestingly, the sum of the three is always posi-
tive, vanishing precisely in the limit ofD1→0. On defining
the relative diffusion constant

d ;
D0

D0 + D1
, s40d

we have

DR = D0f1 − ẽ + Fsddẽ2 + Osẽ3dg. s41d

The two-loop coefficient is given by

Fsdd =
s1 − dd

p
H s2d4 + 7d2 − 1d

s1 − d2d1/2s1 + d2d2

+
2s2 − d2d
s1 + d2d5/2 sin−1S1 + d2

2
D1/2

+
p

2d2F 4

ps1 + d2d1/2 sin−1S1 + d2

2
D1/2

− 1GJ .

s42d

This function, along with its individual contributions, is
plotted in Fig. 8. We give here some limiting cases:

Fsdd , F2s1 − dd
p2 G1/2

, d → 1, s43d

Fsdd = 0.4319 . . . , d = 1/2, s44d

Fsdd =
3

4
s1 − dd + Osd2d, d ! 1. s45d

This ends our discussion of perturbation theory. This tech-
nique can be extended to study the renormalization of the
chemotactic coupling, and this will be the subject of future
work.

VI. NECKLACE APPROXIMATION

We now turn to an alternative closure scheme and contrast
its predictions to both mean-field closure and the exact per-
turbative results obtained in the previous section. Given the
intractability of interacting many-body systems, there has
been a great deal of work over the years on resummation
techniques[24]. One tries to identify an infinite subset of
diagrams which can be exactly summed, thus leading to non-
perturbative results. The catch, of course, is that there is

FIG. 8. The two-loop contribution to the renormalized diffusion
coefficientFsdd vs d=D0/ sD0+D1d (solid line). The dashed lines
show the individual contributions from the three two-loop diagrams
(see Appendix B).

MANY-BODY THEORY OF CHEMOTACTIC CELL-CELL… PHYSICAL REVIEW E 70, 051916(2004)

051916-7



often noa priori reason why summing a particular class of
diagrams is mathematically meaningful. However, it is often
possiblea posteriorito generalize the original model in such
a way as to heavily weight the chosen subset of diagrams,
thereby giving a limit in which the resummation is exact and
allowing one to better understand the physical(or biological)
basis of the nonperturbative results. These resummation tech-
niques have proven to be an invaluable tool in nuclear and
statistical physics, prime examples being the “large-n ap-
proximation”[26], the “parquet approximation”[27], and the
“planar approximation”[28]. We shall examine one of the
simplest such resummation schemes for our model of cell
movement, namely the “necklace approximation”[29],
which is akin to the Hartree-Fock approximation[24].

Referring to the diagrammatic expansion for the cell
propagator(Fig. 7) we notice that the first two-loop diagram
resembles a “doubled” version of the one-loop diagram.
Clearly, at third order there will be a diagram with three
sequential loops(or “bubbles”). If we focus on only these
“bubble” or “necklace” diagrams, then we can interpret the
resulting infinite perturbation expansion as a geometric se-
ries, which allows us to exactly resum all such diagrams.
This strategy is illustrated diagrammatically in Fig. 9.

Although it is an unjustified approximation to keep only
necklace diagrams within the current model, one can con-
sider more complicated models for which this approximation
would be reasonable. On comparing the two-loop necklace
diagram to the rainbow and crossover diagrams(Fig. 7), one
sees that the latter diagrams would be less important in a
model which included a refractory(or “recovery”) time for
the cell subsequent to emitting a chemical signal. Similarly,
the necklace diagrams are precisely appropriate for a model
in which the cell can emit one signal only between reception
events of incoming signals.

The self-consistent equation for the single-cell propagator
which arises from the necklace approximation may be writ-
ten as

G̃Rsk,td = G̃0sk,td + eE
0

t

dt8G̃0sk,t − t8dE
0

t8
dt9E dk8

3sk ·k8dG̃lsk8,t8 − t9dG̃0sk − k8,t8 − t9d

3G̃Rsk,t9d. s46d

This equation can be solved by Laplace transforming in time,
and one finds

ĜRsk,sd

=
Ĝ0sk,sd

1 − eĜ0sk,sd E dk8sk ·k8dLusutfG̃lsk8,tdG̃0sk − k8,tdg
.

s47d

On performing the Laplace transform of the product of the
bare cell propagator and the chemical Green function one
finds

ĜRsk,sd = fs+ Deffsk,sdk2g−1, s48d

where

Deffsk,sd = D0H1 − ẽsddF1 +
s

l
+ S D1

D0 + D1
DD0k

2

l
G−d/2J ,

s49d

with ẽsdd as given in Eqs.(36)–(38).
From the definition of the renormalized diffusion coeffi-

cient given in Eq.(31) it is straightforward to show that

DR = D0f1 − ẽsddg, s50d

which is identical to the one-loop perturbative result. In other
words, within the necklace approximation there are no con-
tributions to the renormalized diffusion constant from loop
diagrams higher than the first. Clearly, the renormalized dif-
fusion constant will be zero at a critical value of the chemo-
tactic coupling defined byẽcsdd=1. For values of the cou-
pling larger than this critical value the renormalized diffusion
constant becomes negative, indicating that the necklace ap-
proximation breaks down, and the cell density becomes infi-
nitely peaked at a single point. This is analogous to the
“blowup” phase in the KS equations[6].

Precisely at the critical point one might expect some
anomalous scaling behavior. This is indeed the case. Setting
ẽsdd=1 we have from Eq.(49)

Deffsk,sd ,
dD0

2l
Ss+

D1

D0 + D1
D0k

2D , s51d

where we have takens/l!1 andD0k
2/l!1 consistent with

probing the long-time, large-distance scaling behavior of the
system. Inserting this form into the propagator(48) we find
s,k4. Thus, the scaling behavior of the propagator at the
critical point is given by

ĜRsk,sd = Fs+
d

2l

D1

D0 + D1
sD0k

2d2G−1

. s52d

This indicates a subdiffusive spreading of the single-cell dis-
tribution function with a dynamical length scalelstd, t1/4.
This result holds in all dimensions.

This anomalous scaling behavior, although interesting,
has a serious flaw. The single-cell distribution function,
which is equivalent to the renormalized propagator, is a non-
negative quantity. However, on performing an inverse
Laplace-Fourier transform of Eq.(52) we find a propagator
which decays with distance in an oscillatory manner, becom-

FIG. 9. Diagrammatic representation of the necklace
approximation.
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ing negative in some regions. This indicates that the necklace
approximation produces unphysical results at the critical
point itself, and one must therefore view the critical scaling
behavior found above with caution.

VII. NUMERICAL ANALYSIS

Numerical simulation of chemotaxis via individual-based
cell signaling has proven to be a nontrivial task, even within
the simple models considered in this paper. We have found
strong dependence of the large-scale, long-time dynamics on
microscopic details of the algorithms, such as whether the
cell is constrained to move on an underlying lattice, and
whether the chemical field is modeled as a continuum con-
centration as opposed to an ensemble of discrete diffusing
molecules. A detailed survey of our numerical investigations
into these issues is currently in preparation[30]. For the
purposes of the current paper, we wish to compare our most
robust numerical results with the predictions of the perturba-
tion theory and necklace approximation described in Secs. V
and VI. This numerical work has been confined to the sim-
plest case of a single cell using autochemotaxis to move in
one spatial dimension.

We dispense altogether with an underlying grid by basing
our numerical algorithm on the Langevin equation(1) and
the accompanying solution of the chemical diffusion equa-
tion (6), in which the chemical concentration field has been
explicitly integrated using the Green functionGl. On per-
forming the spatial integral over thed function in Eq.(6) and
inserting into Eq.(1) we have(on specializing tod=1 and
setting the indexi =1 since we deal here with a single cell)

ẋ1std = jstd + eE
0

t

dt8Hl„x1std − x1st8d,t − t8…, s53d

where the functionHl is simply the spatial derivative ofGl:

Hlsx,td ; ]xGlsx,td = −
x

4spD1
3t3d1/2 expS− lt −

x2

4D1t
D .

s54d

Thus, we need only track the history of the cell positionxstd.
The chemical field is not explicitly evaluated in the simula-
tion. This algorithm is easily extended to multiple cells and
higher dimensions. The CPU time scales asN for N cells (if
one uses neighbor tables), and naively scales asM2 for simu-
lations over a temporal durationt=Mdt. In fact the CPU time
scales linearly withM so long asl.0, since the exponential
decay contained with the kernel of Eq.(53) allows one to
restrict the time integral to the ranget8P st−K /l ,td, where
the parameterK is typically taken to beK=3. We have ex-
plicitly checked the validity of this truncated interval by
comparisons with simulations in which the entire cell history
is retained. Note that algorithms which explicitly integrate
the chemical fields on a grid of linear sizeL have an associ-
ated CPU time which scales asLd and thus become progres-
sively less efficient for higher dimensions. This disadvantage
is compounded by the more serious problem of numerical
artifacts introduced by the presence of an underlying grid
[30].

Numerical iteration of Eq.(53) proceeds by performing a
discretized version of the time integral using the previous
cell positions and thus calculating the new cell velocity. This
is used to predict the new position of the cell. A given noise
historyjstd defines one realization or “sample.” The dynami-
cal fluctuations tend to be very large, and so heavy sample
averaging is required to produce statistically smooth data.
We have used 105 samples to generate the data described
below. This large but finite number of samples will lead to a
sampling error of approximately 1% which is consistent with
the scatter of points in Figs. 10 and 11. We have not shown
error bars on these figures, as the sampling error is indepen-
dent of ê.

We have examined the long-time behavior of the cell for a
wide range of values ofe. In the data presented here we have
fixed the other parameters at the valuesD0=D1=1.0 andl
=0.05. The time step is chosen to bedt=0.2, which is small
enough to ensure numerical stability, but not so small as to
prohibit long-time simulations for the necessarily large num-
ber of samples. For all values ofe that we have studied the
cell asymptotically performs diffusion, in the sense that its
spatial variance increases linearly with time. We measure the
effective diffusion coefficient by extracting the slope of the
variance-time curve for large timestP s20,200d such that
transient behavior from the time scale 1/l has died away. We
have explored other values for the bare diffusion constants,
and consistent behavior of effective diffusion is observed in
all cases. In particular, we find an effective diffusion coeffi-
cient consistent with Eq.(55) for the case ofD0=0.1 and
D1=1.0 (note, the caseD0!D1 is relevant to many systems
of aggregating microorganisms).

One subtlety in applying this algorithm is the apparent
divergence at the upper limit of the time integral in Eq.(53).
Numerically, this is handled by integrating only up to the
time step before the current time. One can show that this
introduces an error ofOsdtd in the estimate for the diffusion
coefficient. We have explicitly calculated the propagation of
this error into the first-order prediction of the renormalized
diffusion constant, and we find

DR = D0f1 − ê + Osê2dg, s55d

where

êsdtd = ẽF1 − 2Sldt

p
D1/2G , s56d

with the dimensionless coupling constantẽ= ẽs1d defined in
Eq. (36). Naturally, the prediction ofDR for nonzerodt given
in Eq. (55) agrees with our perturbative result in Eq.(35) as
dt→0.

In Fig. 10 we plot the measured values ofDR from our
simulations along with the first-order perturbation theory
prediction(55). The agreement is very satisfactory. It is not a
simple matter to test the second-order perturbation theory
predictions since(i) the tedious integrals evaluated in Appen-
dix B need to be reevaluated for a finitedt, and(ii ) higher-
precision data are required to test the second-order effects,
meaning another order of magnitude of computing time. We
also show the effective diffusion constant as measured from
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integrating the Keller-Segel equations(22) and(24). The pre-
diction from perturbation theory is thatDR=D0, within
mean-field theory, since the diffusion constant is only renor-
malized by statistical correlations. This is borne out by the
simulations. For our integration algorithm, we have used a
recently developed method which has been shown to have
higher precision than conventional “upwind” methods[31].
The very weak dependence ofDR on e, from integrating the
KS equations, is due to numerical diffusion which is an in-
escapable consequence of integrating advection-diffusion
equations on a grid. The numerical diffusion can be made
increasingly smaller by decreasing the grid size.

We have also studied the behavior of the cell variance for
larger values ofe which lie beyond perturbation theory. We
find no sign of a collapse transition in contrast to the predic-
tions of the necklace approximation. The cell is always ob-
served to perform effective diffusion for large times, and the
renormalized diffusion constant tends to zero approximately
asDR,e−2 (Fig. 11). This result is consistent with the pre-
diction from a strong-coupling approach to auto-chemotaxis
[32] based on an asymptotic analysis of the Langevin equa-
tion (1), the details of which lie beyond the scope of this
paper.

VIII. SHORT-RANGE INTERACTIONS

The model as presented has treated the cells as point “par-
ticles” with no spatial extent and/or internal structure. In or-
der to confront the model with biological reality, be it in the
context of social amoeba or embryonic cell clusters, it is
crucial to introduce smaller-scale interactions. Certain of
these interactions are truly intracellular and require complex
additional models for their description, examples being actin
filament assembly to describe the details of cell motility, or
signaling pathways regulating the reaction of the cell to vari-

ous chemical cues[1]. Such complex mechanisms are be-
yond the scope, and perhaps the spirit, of the current model.
Given the phenomenological nature of the model, we wish to
add biological complexity in as simple a manner as possible,
while maintaining biological “plausibility.” Two important
short-range interactions that can be described in this manner
are finiteness of cell size, and cell-cell adhesion. Both may
be described by introducing an effective short-ranged inter-
cellular potential Vsuxi −x jud. A schematic form forV is
shown in Fig. 12. The potential is characterized by two
length scales: the diameter of the cella, and the range of
extension of cell-cell adhesionb,2a. There is also an en-
ergy scaledV giving a measure of the strength of adhesion.

The inclusion ofV in our original model leads to the
following system of equations for the cell positions:

ẋi = ji + a¹if − o
jÞi

=iVsuxi − x jud, s57d

wheref still satisfies the diffusion equation(3). In the above
equation, the vectorxi denotes the position of the center of
mass of celli. We have assumed a spherically symmetric

FIG. 10. Numerically measured values of the renormalized dif-
fusion coefficientDR versus the chemotactic couplingê [corrected
for nonzerodt; cf. Eq. (56)] for a single cell(white triangles) com-
pared to the first-order prediction of perturbation theory(55) (solid
line). We also show the measured values ofDR from integration of
the KS equations(black triangles) compared with the mean-field
prediction (dashed line). The small disparity is due to “numerical
diffusion” which results from the spatial discretization of the KS
equations.

FIG. 11. Numerically measured values of the renormalized dif-
fusion coefficient for larger values ofe which lie beyond the per-
turbative regime, plotted on a log-log scale. The solid line has a
slope of −2 and is a guide to the eye, showing the approximate
relationshipDR,e−2.

FIG. 12. Schematic of the intercellular potentialVsrd showing
short-range repulsion and weak attraction, with strengthdV over a
range of approximately one to two cell diametersa.
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potentialV identical for all pairs of cells. Naturally, both of
these assumptions can be relaxed when necessary. It is even
possible for the potentialV to have a functional form dictated
by the local configuration of neighboring cells. This is an
interesting direction to pursue, as it would allow nontrivial
cell shape deformations to be modeled in a self-consistent
manner.

Much of the foregoing analysis, based on probability dis-
tributions and diagrammatics, may be developed to include
the potentialV. We shall content ourselves here with a brief
description of mean-field theory In a similar manner to the
derivation of the equation of motion forPisx ,td given in Sec.
II, we find

]tPi = D0¹
2Pi

− « = ·E ddx8E
0

t

dt8f=Glsx − x8,t − t8dg

3o
j

Pi,jsx,t;x8,t8d

+ = ·E ddx8f=Vsux − x8udgo
jÞi

Pi,jsx,t;x8,td. s58d

Applying the mean-field approximationPi,j =PiPj and sum-
ming the equation over the cell indexi we find a self-
consistent equation for the cell densityrsx ,td:

]tr = D0¹
2r + = · r =E ddx8FVsux − x8udrsx8,td

− «E
0

t

dt8Glsx − x8,t − t8drsx8,t8dG . s59d

Interestingly, this equation, in the absence of the chemotactic
term, has been recently introduced within the context of so-
cial dynamics, with application to phenomena such as
“swarming” [33,34]. Deviations from mean-field theory will
be less severe in the absence of long-range chemical interac-
tions, since the nonlinear potential term is local in time. One
can show that statistical correlations will not lead to a renor-
malization of cell diffusion through short-range cell-cell in-
teractions.

IX. DISCUSSION AND CONCLUSIONS

We have introduced and analyzed a stochastic individual-
based model of chemotactic cell movement. In this prelimi-
nary work, we have focused on a single cell type with a
single chemical signaling field, which may be used either for
positive(aggregating) or negative(repelling) chemotaxis. As
discussed in Sec. II, the model consists of a set ofN Lange-
vin equations(1) for the dynamics of the positions of theN
cells, along with a continuum diffusion equation for the
chemical field(3). This representation allows intuitive model
building and the extraction of efficient numerical algorithms.
However, for mathematical analysis, it is convenient to de-
scribe the dynamics of the system in terms of multicell prob-
ability distribution functions(PDF’s). The equation of mo-

tion for the single-cell PDFPi [Eq. (9)] contains the two-cell
PDF Pi,j. This is the tip of an infinite hierarchy of multicell
PDF’s and is typical of interacting many-body systems.

In Sec. III we described a diagrammatic representation of
the PDF’s. Exact diagrammatic relations were derived for
single-cell and two-cell PDF’s(Figs. 2 and 3). With the aid
of these relations, we derived the diagrammatic perturbation
theory forPi to two loops(i.e., up to and including terms of
second order in the chemotactic couplinge). The two-loop
diagrams fall into a number of classes, such as tree diagrams,
renormalization of the single-cell propagator, and renormal-
ization of the chemotactic coupling. A diagram also arises
which lies outside the “dressed” mean-field theory, and
which shows single-cell diffusion mediated by two-cell in-
teractions(Fig. 6, diagramn). The hierarchy of PDF’s can be
broken simply at the first level by imposingPi,j =PiPj;
namely, by discarding statistical correlations between cells.
In Sec. IV this mean-field approximation was shown to lead
exactly to the deterministic Keller-Segel equations of chemo-
tactic aggregation(22) and (24), which provides a useful
benchmark for our model.

In Sec. V we analyzed the stochastic theory exactly within
perturbation theory. We concentrated on calculating the
renormalization of the cell diffusion coefficient, and pre-
sented results to first order in« for dimensionsd=1, 2, and 3
[Eq. (35)], and to second order ine for d=1 [Eq. (41)]. We
restricted our analysis of the second-order effects tod=1
since this is the case in which the strongest corrections to
mean-field theory are expected. The first-order corrections to
D0 are proportional tos−ed, which is to be expected: e.g., for
positive chemotaxis it is intuitive that the cell is attracted
somewhat by its own signal and is consequently reduced in
its diffusive ability. Interestingly, the second-order correc-
tions are proportional tos+e2d, the sign remaining positive
for all values of the other model parameters. This hints that
positive autochemotactic interactions are not strong enough
to reduce the renormalized conclusion is borne out from the
results of a careful numerical analysis. We stress that the
results described above hold when the chemical field has a
nonzero decay ratel. If l=0 then the perturbation theory
diverges fort→`, signaling a different type of dynamics—
either autochemotactic collapse or anomalous diffusion. Nu-
merical work on a related discrete model suggests the latter
[30]. This case can in principle be studied within a renormal-
ization group calculation, perturbatively about two dimen-
sions.

An alternative closure scheme to mean-field theory,
namely, the necklace approximation, was explored in Sec.
VI. Although an uncontrolled approximation within the cur-
rent model, this closure scheme would be appropriate for a
specific model in which cells have inhibited ability to relay
signals before responding to a prior signal. The necklace
approximation leads to an analytically tractable theory for
single-cell autochemotactic response. We found that the ex-
act one-loop perturbative result for the diffusion coefficient
is exact to all orders within this approximation scheme. It
follows that the cell becomes immobile for values of the
(positive) chemotactic coupling above a critical value. Pre-
cisely at the critical point we showed that the cell wandering
is anomalous, with the root-mean-square spatial deviation of
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the cell increasing subdiffusively ast1/4. These results are
applicable in all dimensions, although some doubt is cast on
their validity by the nonpositivity of the density at the critical
point.

Our main results on the perturbative renormalization of
the cell diffusion coefficient due to autochemotactic response
were carefully checked by numerical integration of the
theory (Sec. VII). Very satisfactory quantitative agreement
with the perturbative results was found for small coupling.
The strong coupling limit was also explored yielding a
smooth decay of the renormalized diffusion coefficient with
increasing positivee. The numerical results indicateDR
,e−2 for large e.0. This result is consistent with prelimi-
nary calculations from a strong coupling analysis, the details
of which will be given elsewhere[32]. Our numerical
scheme, derived from the Langevin representation of the
model, is “off lattice” and requires knowledge of only the
cell positions. The chemical field is not explicitly integrated,
and is implemented in the simulations via exact diffusive
Green functions. This allows high-speed integration of the
model and is ideal for cell simulations in higher dimensions,
since the efficiency of the algorithm depends only on the
number of cells—not on the dimension of space.

Finally, in Sec. VIII we examined a biological weakness
of the original model, that being the treatment of cells as
point particles. The finiteness of the cell diameter, along with
short-range intercellular adhesion interactions, were shown
to be easily incorporated into the Langevin framework via an
“effective intercellular potential.” We restricted our analysis
of this term to mean-field level, within which we showed that
our stochastic model becomes equivalent to nonlinear “social
dynamics” models that have attracted recent interest such as
simple models of swarming[33,34].

Now that we have established this general framework for
analyzing statistical correlations in multicellular systems,
there are numerous avenues for future research. In the short
term we are interested in calculating perturbative renormal-
ization of the chemotactic couplinge, such terms arising
from certain two-loop diagrams discussed in Sec. V. It would
also be interesting to use perturbative renormalization group
methods to calculate the anomalous single-cell distribution
function in the casel=0. In terms of strong coupling meth-
ods, given the weaknesses of the necklace approximation, it
is worthwhile exploring alternative resummation schemes.
Along these lines, we have been developing a strong cou-
pling method based on asymptotic analysis of the formal
solution to the Langevin equation(53), the results of which
will be discussed elsewhere[32]. In the longer term, it is
important to make contact with more biological examples.
This necessitates more complicated models, but such models
can still be constructed using the methods outlined here. Two
examples which introduce only modest complications and
which may be analytically tractable are(i) aggregation of
cells in the presence of two chemical fields: a chemoattrac-
tant and a degrading enzyme[3], and(ii ) an interacting sys-
tem of bacterial prey and predating amoeba[2]. For truly
complex situations, such as processes occurring in the early
embryo, the formalism introduced here is still appropriate,
but must be implemented via numerical algorithms. We are
hopeful that algorithms based on Eq.(53) will be highly

efficient for such tasks as they can be realistically applied to
large cell numbers in three dimensions.

In conclusion, we have presented a preliminary analysis
of statistical correlations in multicellular systems. Our theo-
retical framework resembles the many-body theory used to
study interacting systems in condensed matter, nuclear phys-
ics, and the liquid state. Nontrivial complications in cellular
systems stem from memory effects built into the interactions
via the diffusing signaling fields. Strongly interacting cell
systems abound in nature. Some, such as biofilms[35], are
important from the biotechnical and bioengineering perspec-
tives; while others, such as aggregating amoebas(e.g.,Dic-
tyostelium) [3] and early embryos[8], are central to our un-
derstanding of the evolution of organisms and associated
fundamental issues of development. Our long-term aim is to
use the theory developed in this paper as a framework for the
study of these more complex systems. There is no limitation
on the number of cell types and signaling fields which may
be incorporated into this framework. However, we have
shown that even the simplest case of one cell type and one
chemical field possesses nontrivial dynamics due to strong
statistical correlations. These correlations are a general con-
sequence of motile agents which respond to a complex envi-
ronment that they, themselves, have produced.

ACKNOWLEDGMENTS

It is a pleasure to thank Alan McKane, Hans Othmer,
Kevin Schmidt, and Cornelius Weijer for interesting discus-
sions. T.J.N. also thanks Thomas Hillen and Hans Othmer for
encouragement through participation in the SIAM minisym-
posium “Frontiers in Chemotaxis Modeling.” The authors
gratefully acknowledge partial support from the NSF(Grant
No. DEB-0328267).

APPENDIX A: A GUIDE TO THE DIAGRAMMATIC
REPRESENTATION

We give here a brief guide to the use and interpretation of
diagrams for those readers who are unfamiliar with this tech-
nique. The rationale for employing diagrams is twofold: first,
diagrams allow one to gain an intuitive sense of the structure
of a theory (since pictures are easier to comprehend than
integrals); and second, the logical structure of diagrams en-
ables lengthy calculations to be performed in a far more ef-
ficient manner.

In this appendix we will present two of the diagrammatic
steps of the paper in detail. This should allow the reader to
reconstruct the other numerous diagrammatic manipulations
we have used. We also refer the reader to the textbook of
Mattuck [24] for a good introduction to the use of diagrams,
albeit in the distinct field of condensed matter physics.

Consider the formal solution Eq.(13) to the equation of

motion (12) for the probability distributionP̃isk ,td, which
we repeat below:
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P̃isk,td = G̃0sk,td + «E
0

t

dt8G̃0sk,t − t8d

3E
0

t8
dt9E dk8sk ·k8dG̃lsk8,t8 − t9d

3o
j

P̃i,jsk − k8,t8;k8,t9d. sA1d

We can represent this equation in diagrammatic form by de-
fining a “key” in which the Green functions and probability
distributions are written uniquely in terms of diagrammatic
elements. This key and the diagrammatic form of Eq.(A1)
are given in Fig. 13, where we have labeled each element of
the equation in detail. Time flows from right to left within
each term of the equation, and wave vectors(whose flow is
indicated by the arrows) are conserved at each diagrammatic
vertex. All dummy variables are to be integrated over the
allowable range; e.g., the variablet8 is to be integrated from
0 to t. One must be careful to remember the wave vector
weight sk ·k8d at the vertex between the chemical propagator
(wavy line) and the outgoing cell diffusion propagator(faint
line). Once the diagrammatic rules are familiar it is no longer
necessary to explicitly label the equation, and then one draws
Fig. 13 in the reduced form given in Sec. III(Fig. 2).

The diagrammatic derivation of the perturbation theory
presented in Fig. 6 from the theory encapsulated in Figs. 2, 3,
and 5 involves direct substitution of Fig. 3 into Fig. 2, and
further substitution of the various combinations from Fig. 5
into the resulting diagrammatic equation. Only the topology
of a diagram is relevant, and so although one may find rather
“messy” diagrams after the substitutions outlined above, one
can redraw such diagrams, carefully preserving their topol-
ogy, until one finds a systematic(and aesthetically coherent)
form. Such a form varies with taste—the authors find the
form of the diagrams in Fig. 6 quite satisfactory.

After perturbation theory has been performed using dia-
grams, one needs to unwrap the diagrams as integrals, so as
to mathematically evaluate their contribution. We present
here an explicit transcription of the one-loop diagram in Fig.
7, by redrawing this diagram(Fig. 14) in the explicit repre-
sentation. Given the key in Fig. 13, the transcription should
be clear, yielding Eq.(27) in the main text.

APPENDIX B: TWO-LOOP CONTRIBUTIONS TO DR

There are three two-loop diagrams which contribute to the
renormalization of the cell diffusion constant. We summarize

here their evaluation. We shall work exclusively in one spa-
tial dimension for the reasons given in Sec. V.

We write the two-loop correction toG̃Rsk,td as

G̃R
s2dsk,td = S̃1sk,td + S̃2sk,td + S̃3sk,td, sB1d

whereSn refers to the two-loop diagrams in Fig. 7, which in
order, we refer to as the “necklace diagram”sn=1d, the
“rainbow diagram”sn=2d, and the “crossover diagram”sn
=3d. Likewise, we break the two-loop contribution toDR into
three parts:

DR
s2dsk,td = D1 + D2 + D3, sB2d

where, from Eq.(31), we have

Dn = −
1

2
lim
s→0

s2f]k
2Ŝnsk,sdgk=0. sB3d

In terms of the dimensionless couplingẽ= ẽs1d (36) the co-
efficient of the two-loop contribution toDR can be written as
[cf. Eq. (41)]

Fsdd = F1sdd + F2sdd + F3sdd, sB4d

where we extract the individual contributions via

Fnsdd = S«

«̃
D2Dn

D0
. sB5d

We now sketch the computation of these three contributions
to Fsdd.

1. The necklace diagram

Laplace transforming in time we have

Ŝ1sk,sd = Ĝ0sk,sd3E dk1E dk2k
2k1k2

3fs+ l + D1k1
2 + D0sk − k1d2g−1

3fs+ l + D1k2
2 + D0sk − k2d2g−1. sB6d

No explicit evaluation is necessary due to the explicit factor
of k2. In the limit dictated by Eq.(B3) we find D1=0 and
thusF1=0.

2. The rainbow diagram

Laplace transforming in time we have

FIG. 13. The diagrammatic representation of Eq.(A1) with ex-
plicit labeling of times and wave vectors. An explicit key relating
the diagrammatic elements to the underlying propagators and prob-
ability distributions is given within the boxed area.

FIG. 14. The one-loop necklace diagram with explicit labeling.
Using the key from Fig. 13, the reader will be able to reconstruct
Eq. (27).
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Ŝ2sk,sd = Ĝ0sk,sd2E dk1E dk2kk1k2sk − k2d

3fs+ l + D1k2
2 + D0sk − k2d2g−2

3fs+ 2l + D1sk1
2 + k2

2d + D0sk − k1 − k2d2g−1.

sB7d

The denominators are exponentiated using the integral rep-
resentation:

B−f = fGsfdg−1E
0

`

da af−1e−aB. sB8d

This allows the wave vector integrals to be straightforwardly
evaluated via completing the square. On differentiating twice
with respect tok and taking the limit dictated by Eq.(B3) we
find

D2 =
D0

8plsD0 + D1d3E
0

`

da ae−aE
0

`

db e−2b

3F s2 − 3dd
b1/2fa + s1 − d2dbg3/2 +

3d2s1 − ddb1/2

fa + s1 − d2dbg5/2G ,

sB9d

with d as given in Eq.(40). The evaluation of this double
integral is straightforward but tedious, and gives a contribu-
tion to Fsdd of the form

F2sdd =
1

p
H s1 − dds2d4 + d3 + 6d2 + d − 2d

s1 − d2d1/2s1 + d2d2

+
2s2 − 3d − d2d

s1 + d2d5/2 sin−1S1 + d2

2
D1/2J . sB10d

3. The crossover diagram

Laplace transforming in time we have

Ŝ3sk,sd = Ĝ0sk,sd2E dk1E dk2 kk1 k2sk − k2d

3fs+ l + D1k1
2 + D0sk − k1d2g−1

3fs+ l + D1k2
2 + D0sk − k2d2g−1

3fs+ 2l + D1sk1
2 + k2

2d + D0sk − k1 − k2d2g−1.

sB11d

As for the rainbow diagram, the denominators are exponen-
tiated using the integral representation(B8) which allows the
wave vector integrals to be straightforwardly evaluated. On
differentiating twice with respect tok and taking the limit
dictated by Eq.(B3) we find

D3 =
D0

8plsD0 + D1d3E
0

`

da e−aE
0

`

db e−bE
0

`

dc e−2c

3 F a + 2c

fsa + cdsb + cd − d2c2g3/2

−
3dcsa + cdsb + s1 − ddcd
fsa + cdsb + cd − d2c2g5/2G . sB12d

The evaluation of this triple integral is straightforward but
tedious, and gives a contribution toFsdd of the form

F3sdd =
1

p
H s1 − dd2

s1 − d2d1/2s1 + d2d
+

2d

s1 + d2d3/2 sin−1S1 + d2

2
D1/2

+
ps1 − dd

2d2 F 4

ps1 + d2d1/2 sin−1S1 + d2

2
D1/2

− 1GJ .

sB13d

The forms ofFn sn=1,2,3d along with their sumFsdd are
plotted in Fig. 8 in the main text. It is interesting to note that
for d close to unity the contributions from the rainbow and
crossover diagrams have different signs, but conspire to give
a sum which is positive, albeit vanishingly small in the limit
d→1.
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