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We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields.
This model is formulated using Langevin dynamics, which allows an analytic study using methods from
statistical and many-body physics. In particular we construct a diagrammatic framework within which to study
cell-cell interactions. In the mean-field limit, where statistical correlations between cells are neglected, we
recover the deterministic Keller-Segel equations. Within exact perturbation theory in the chemotactic coupling
€, statistical correlations are non-negligible at large times and lead to a renormalization of the cell diffusion
coefficient Dg—an effect that is absent at mean-field level. An alternative closure scheme, based on the
necklace approximation, probes the strong coupling behavior of the system and prediEtg haenormal-
ized to zero at a critical value @& indicating self-localization of the cell. Stochastic simulations of the model
give very satisfactory agreement with the perturbative result. At higher values of the coupling simulations
indicate thaDr~ €2, a result at odds with the necklace approximation. We briefly discuss an extension of our
model, which incorporates the effects of short-range interactions such as cell-cell adhesion.

DOI: 10.1103/PhysReVvE.70.051916 PACS nund)er87.17—-d, 87.18—h, 05.10.Gg

I. INTRODUCTION within which the evolution of multicellularity has proceeded.

Cell movement via chemotaxis is a fundamental procesghe biological insight afforded by such an understanding is
in both unicellular and multicellular organisni]. Chemot-  the long-term goal of this work. In this introductory paper we
axis is broadly defined as movement in response to a chemaim to present a comprehensible theoretical description of
cal gradient. Microorganisms use chemotaxis to locate foo@ur model and its preliminary analysis.
sources, avoid obstacles, and in some cases to aggregate withThe outline of the paper is as follows. In the next section
like cells to form fruiting bodie$2,3]. Such aggregating cel- we define the model, which is written in terms of Langevin
lular systems have been of intense theoretical interest fadynamics. We show that the equations of motion for prob-
many years, and have typically been modeled using coupledbility distributions have an infinite hierarchy. In Sec. Ill we
differential equations, most notably the Keller-Se@€B)  construct a diagrammatic representation of this hierarchy
model and its variantgl—7]. More recently theoretical atten- which greatly simplifies both analysis and interpretation of
tion has been focused on other, more complex, forms ostatistical fluctuations. In Sec. IV we enforce a mean-field
chemotaxis, typically in higher organisms; examples beingruncation of the model. We show that the resulting model
intercellular organization in the early embri@®-10], and the  corresponds precisely to the KS equations, which provides a
use of chemotaxis for specific location of targets, such asiseful benchmark for our theory. In Sec. V we proceed to
leucocytes locating bacterifll] and sperm locating ova account for fluctuations systematically within perturbation
[12]. theory—this is conveniently handled using diagrammatic

From a statistical physics viewpoint it is natural to inves- methods. We present results to second order, and show that
tigate the role of fluctuations during chemotaxis in multicel-fluctuations(via cell-cell correlationslead to a renormaliza-
lular systems. The KS model and its variants have the forntion of the cell diffusion constant. In Sec. VI we go beyond
of mean-field type models and, according to the conventiongberturbation theory using the simplest approximate resum-
wisdom from critical phenomena, will not be able to addressmation of the diagrams—namely, the necklgoe Hartree-
such questiongl3]. Some groups have been probing fluctua-Fock) approximation. This scheme predicts both a renormal-
tions implicitly by constructing computer algorithms of cell ization of the diffusion constant and, for larger couplings, a
movement and cell interactions; in particular, we mention theself-localization transition. We test these predictions, in Sec.
work of Drasdoet al. [14-16, who have developed Monte VII, by means of a careful numerical simulation of the model
Carlo simulations for a range of multicellular procesgeg., in one dimension. The perturbative results are quantitatively
tumor growth and wound healipgand Glazieret al, who  confirmed, but the self-localization transition is not observed.
have used an ingenious form of the Potts madewhich a  We emphasize that our numerical algorithm is very efficient
given spin orientation identifies a unique ¢eib model a in describing large numbers of cells in higher dimensions,
variety of cellular systemgl7-19. since the algorithm does not require an underlying grid and

In this paper we address the question of chemotactic flucts speed is thus relatively insensitive to the dimensionality
tuations from an analytic viewpoint by introducing a stochas-of space. Then, in Sec. VIII, we briefly discuss some exten-
tic model of cell movement which is amenable to calcula-sions of our model which are necessary to describe short-
tion. A quantitative understanding of fluctuations in cell-cell range adhesive interactions between cells. We summarize our
interactions is necessary in order to uncover the constraint®sults and discuss future work in Sec. IX.
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Il. THE BASIC MODEL

As mentioned in the Introduction, we are interested in the
statistical correlations between cells which share a chemica
signaling field. The simplest way to investigate this is to
construct a model in which the cells, perforce, are describeq
on an individual basis, but in which the chemical signals are
treated in the continuum limit. For all but the lowest chemi-
cal concentrations, this appears to be a reasonable lengtt
scale separation to make.

We considem identical cells moving in a-dimensional
space. The position of cellis denoted by;. Each cell emits
a chemlcaI. signal with ratﬂl, a”“,' chemotactlcally responds illustrate a more complex scenario of two cell types interacting via
t? the grad'le.n't of the chemical f'e_ld with ConStan,t Che‘_mOt_""Cbhemical signals, with concentration fields denoted ¢oyand .
tic susceptibilitya. The concentration of the chemical field is g5 andj could, for instance, represent a bacteri(inattempt-

denoted by#(x,t). The molecules comprising the chemical jng (o evade predation by an amoelya with field ¢ representing
field have diffusion constari?; and a degradation rate In a chemoattractant secreted inadvertently by the bactaliaving

the absence of the chemical field, the cells perform puréhe amoeba to locate thgmand ¢ representing a mutual
random walks with diffusion constari?,. This process of chemorepulsive signal between amoetjaandl) allowing them to
emitting and responding to chemical signals will encouragéeed efficiently. The calculations in the present paper will be re-
aggregation fowr >0 (“positive chemotaxisf'and mutual re-  stricted to a single cell typég), although the many-body formula-
pulsion for a<0 (“negative chemotaxig” Although we tion is able to accommodate multiple cell types and multiple signal-
place no restriction on the sign of we will generally have ing fields.

in mind >0 since this allows us to compare our results to

the well-studied case of cell aggregation. single-cell and multicell probability distributions.

Our model can be written down mathematically in the e define the single-cell probability distribution via
form of a Langevin equatiof20]. We have for the cells
Pi(x,t) = (a(x = x;(1)), (4)

Xj=&+aVo, 1)

where the angled brackets indicate an average over the noise.
In a similar manner one defines the multicell distributions,
e.g., the two-cell probability distribution

b) ) J

FIG. 1. Schematic diagram of cell-cell interactions.(& cells
of one type release and respond to a chemoattractant denotgd by
Cellsi andj could, for instance, represent myxobacteria(dpwe

where the gradient ob is evaluated at the current position of
celli. The noiseg is responsible for the random walk aspect
of the cell's dynamics, and for simplicity is sampled from a
Gaussian distribution with zero mean and correlator Py E X, E) = (8(x = X (1) 3K = x;(t))). (5)

<‘fia(t)§})(t,)>:2D05avb5i,i5(t_t,)' (2) In order to find an equation of motion fde; we first
wherea andb refer to spatial components of the noise vec-express the concentration fieilin terms of the cell paths.
tors. The chemical concentration field is modeled by a diffu-This is accomplished by formally integrating E¢), the

sion equation of the form result being
N t
4b=D1V2h =N+ B 8(x ~ xi(1)). @  xb=p f o’ f dt' G, (x—x',t=t) 3 (x' - x;(t"),
i=1 0 j
A similar model in which both the cells and the chemical (6)

molecules are trea.ted as discrete er)titie_s has. been propowﬂere we have defined the Green function for the chemical
by Steveng21]. This model formulation is easily extended diffusion equation

to accommodate multiple signaling fields and cell types. Re-

garding the latter, one can introduce different cell phenotypes X2

by allowing parameters such as 8, andD, to depend on G\(x,t) = (47TD1t)_d/29XP[— D1 M}- (7)

the cell indexi. We refer the reader to Fig. 1 for a schematic 1

representation of chemical signaling between different cellye have imposed an initial condition of zero concentration

types. For simplicity we assume a population of identicaliie|d. This choice is made on the grounds of simplicity. As a

cells in the remainder of this paper. o technical point, it is helpful to leave th&function intact in
The Langevin formulation for cell dynamics given above gq_ (6).

is attractive in that it allows intuitive model building, since  \ne now consider the time derivative Bf. From the defi-

one is considering equations of motion for each cell. Furthernition (4) above we have

more, it allows optimized computer algorithms to be con-

structed(see Sec. VI The Langevin formulation is not,  4P(x,t) == V - {X;(t)8(x — x;(t)))

however, the most convenient representation of the model for

the purposes of analytic calculations. In this case one can ==V {§ox %)~ a V (Vigdx - xi()).

proceed more easily by deriving differential equations for the (8)
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The first term on the right.-hand_s_ide of E@) is the i _ . “bl

standard term that appears in deriving the Fokker-Planck [

equation for a pure random walk and is not affected by the

presence of the chemical field. It can be evaluated by stan- fiG. 2. D.agrammat.c representation of Eﬂﬁ) the single-cell
dard method$20] to give a term proportional to the Laplac- gjstributionP; in terms of the two-cell distributiom,

ian of P,. The second term may be evaluated by inserting the

formal solutlon(6) and rewriting the average ove func- N

:lr?;: rgg‘ferms of the two-cell distribution functig®). One aPi(Kk,t) = — Dgk?Pi (k1) + Efo dt’ f dk'(k - k")

t XGy (k' t=t) 2 Pk —k',t;k",t), (12)
8P =DyV?P; - €V -Jddx’J dt'[VG,(x —x',t=1')] i
° wheredk is shorthand for the wave vector volume element
X 2 Py, tx ), ddk/ (2m)8.
i We have yet to discuss the initial condition for the cells.
(9) In this paper we choose perhaps the simplest, namely, that
the cells are all initially confined to some small region. We

where we have introduced the “chemotactic coupling” therefore takeP;(x,0)=48(x) which corresponds t®;(k,0)
=ap. =1. As time proceeds, the cells will attempt diffusion, which
The chemical field introduces statistical correlations bewill be, to some degree, balanced by chemotactic confine-
tween the cellgvia the Green functior©,). Thus, the one- ment of the cellgfor e>0) due to their production of the
cell distribution function requires knowledge of the two-cell chemical field. Many other initial conditions are of course
distribution. Naturally, the equation of motion for the two- possible depending on the particular biological conditions of
cell distribution will involve the three-cell distribution and so interest. It is sometimes convenient to consider random ini-
on, yielding an infinite hierarchy of distribution functions tial conditions(RIC), since these allow a convenient defini-
typical of interacting many-body systeni22]. Note that tion of cell propagators. We shall not explicitly consider RIC
even for a single cell there will be nontrivial statistical cor- here, but they are easily included in the diagrammatic expan-
relations (contained withinP; ;) due to past fluctuations of sjon described below.
the cell being mediated through the chemical field and affect- Equation(12) may now be integrated forward in time to
ing the same cell at future times. We shall see that suclive
autochemotactic effects play an important role in the long-

time dynamics of the system. ~ = ! = ,
Pi(k,t) = Gy(k,t) + €| dt'Gy(k,t—t')
0

lll. STATISTICAL CORRELATIONS t’ -
AND DIAGRAMMATICS Xf dl”fdk’(k k"Gy(k',t' =t")
0

Given the complex structure of the hierarchy of distribu- ~
tion functions, it is desirable to represent the theory in terms X_E Pijk — k"t k), (13
of diagrams. This allows a compact means by which to ex- !
press the theory, and also aids interpretation of the statistic@lhere we have introduced the Green functi®g which is
correlations which are central to the cell dynamics. We refeﬁppropriate for a cell performing a pure random walk with
the reader to Appendix A for a brief overview of the dia- diffusion constanDy:
grammatic techniques used in this paper. 5

As is typically the case with ma_ny-body theor_les,_ it is Go(x.1) = (47Dgt) 92 eXp|:—X—] (14)
convenient to develop a diagrammatic representation in Fou- 4Dt

rier space. Thus we introduce the Fourier transforms , ) , i
In Fig. 2 we represent E@13) in terms of diagrams. Time

flows from right to left, and each line carries a wave vector
Pi(k,t) = f d% Pi(x,t)eik"‘ (10) (not shown explicitly. Wave vectors are conserved at verti-
ces due to spatial translational invariance. The heavy line

with indexi represent@i, while the faint line represents the
free cell propagato,. The Green functiorfor propagator

- o for the chemical fieldG,, is represented by a wavy line. The
Piik,tk’,t") =J di% %' Py j(x, by b)) ekxikex, intersection point of the wavy line with the cell propagator
represents the chemotactic response and has a wejght
(11)  along with an additional factor d&f, -k, wherek, andk are,
respectively, the wave vectors associated with the propagator
On taking the Fourier transform of E¢Q) we find for the chemical field and the outgoing free cell propagator.

and
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@ T -1, -+ — By (K.t 1) = Golk,t— )Py (K. K )
1 1 t

- t"
) +eJ dt”Go(k,t—t”)f dt’”fdl(’(k k")
j = L~

Xé}\(k”,t" — t’//)
(©) > + } ¥ } XIZ Ei,j,l(k - K"tk K. (16)
] - . j j

This equation is illustrated diagrammatically in Figbg We
must treat one more two-cell distribution, namely, the equal-
time functionP; j(x,t;x",t) with i+ j. The same procedure
as outlined abovéwith the timet integrated back to the
initial time zerg yields

FIG. 3. Diagrammatic representations of the two-cell distribu-
tion P;;(k,t;k’,t") for (a) i=], (b) i#] with t>t’, and(c) i#]j
with t=t’. These diagrammatic equations correspond to Egs
(15—(17), respectively.

t
Finally, the “V-shaped” solid line with~indiceisandj repre- E;i (kK1) =(~30(k,t)éo(k’,t) n EJ dt’éo(k,t—t’)
sents the two-cell distribution functioR; ;. In order to pro- ' 0
ceed it is necessary to derive an equation of motion for this _ ¢ _
two-cell distribution function. We must be careful to distin- xGo(k’,t—t’)f df’f dk'(k - k"G,
guish between the two casesj andi # j. 0

Consider first?; ;(x,t;x’,t"), with t>t’. Following a pro-
cedure identical to that used in the derivation of E), we
find an equation of motion folP; ;. We Fourier transform this
equation and integrate the time variabldack tot’. This +E’i,j,|(k,t';k' -kt k" t]. (17
leads us to

X [Pk =kt 5kt K L)
i

This equation is illustrated diagrammatically in FigcQ
The diagrammatic relations in Figs(a3-3(c) are exact
and encapsulate the two-cell interactions in terms of three-

Prik,tk’,t") = Go(k, t = t")Pi(k + k', t') cell interactions. It is relatively straightforward to express
t ¢ these three-cell interactions in terms of higher-order pro-

+ ef dt’Gg(k,t - t”)J dt”’f dK'(k - k") cesses. Care must be taken to distinguish cases of coincident
v 0 cell indices, and coincident times. We shall not pursue this

G, (K" " — ") _her_e. T.he relat.ior_1$ in Fig. 3. are sufficient to yield useful
AME insight into statistical correlations, and to generate perturba-
XD Py (k=K KK ). (15)  five corrections td; up to and including second order in the
| v chemotactic couplinge. Before proceeding with such an
analysis, let us first gain some intuition by studying the sys-
tem from a mean-field perspective.

This equation. is 'illus'trated diagrammqtically in Fig.g)s . IV. THE DETERMINISTIC LIMIT
The dashed line is simply a bookkeeping device fixing its
two ends at identical timeg@n this casd’). Note, the internal Past models of chemotaxis have typically been formulated

time t” may be less than or greater than the external time in terms of nonlinear coupled partial differential equations
but both are strictly less than the internal titieThe careful  (written in terms of the cell density and chemical concentra-
treatment of causality such as this is crucial for generatingion), based on deterministic dynamics; the canonical ex-
correct diagrams in perturbation theory, as we shall see iample being the well-known KS equatioié,5]. Here, we

Sec. V. shall attempt to make contact with such models by imposing
We now turn toP; ;(x,t;x’,t") with i #j andt>t". Fol-  a mean-field approximation on our model, at the level of Eq.
lowing an analogous procedure to that useddgrwe arrive  (9).
at the equation The two-cell distribution function can be exactly rewritten
in terms of a conditional probability distribution, viz.,
i Pii (6,57, t7) = Py (x, tx’, 1) Py(x',t). (19
1
B * : The mean-field approximation may now be stated clearly as
i
Py, tx’, 1) =Pi(x,t) O j, (19

FIG. 4. The diagrammatic analog of Fig. 2 under the mean-field
approximation—the two-cell distribution is expressed as the prodnamely, we assume that the probability of finding dedt
uct of two one-cell distributions. Iteration of this equation yields anpositionx at timet is statistically independent of the previ-
infinite set of tree-level diagrams. ous positions of all the cells.
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Then from (18), P;;=P;P; and it is a simple matter to
rewrite Eq.(9) in the form

t
P = DoVZPi -eV -Pi(x,t) V f ddx’f dt’
0
XGy(x—x',t=t") X Pj(x",t'). (20)
j

This equation(in Fourier space and integrated forward in

time) is represented diagrammatically in Fig. 4. The equation-

for P; is self-consistent, and on iteration will yield “tree dia-
grams.”

We now show that Eq(20) is identical to the KS equa-
tions. First we define the density of cells via

px,t) = 2 Pi(x,b). (21)

Summing EQq.(20) over the cell index we obtain a partial
differential equation for the density:
ap=DoVip-aV -pVd, (22)

where the ensemble averaged chemical fielg,t) is de-
fined via

t
@(X,t):ﬁjddX’J dt'G,(x = x",t—t")p(x',t") (23
0

(we remind the reader that=«B). Given the definition of
the Green functiorG, it is clear that® satisfies the partial
differential equation

a®d =D, V2D - \D + Bp. (24)

The coupled equation®2) and (24) for the cell density
and chemical concentration are identical to the KS equation

derivation relies on the limit of infinite number of particles to
be taker[21]. The derivation given here is complementary to

this in that it highlights how the KS equations arise from a
mean-field approximation in which statistical correlations

between cells are neglected.

V. PERTURBATION THEORY

The mean-field truncation given in E@L9) is an uncon-

PHYSICAL REVIEW E 70, 051916(2004)

! t— t—
tu: tl: t»:

v - t t

i=l=j,t’>t” i=l=j, t'<t” i=l i=l#j
t t t
t”:__ t”_: tl’
ti_: t,: t—
jEl=i, > =k, v<t” izjl
FIG. 5. The  possible  zeroth-order  forms  for

Pi'“(k ,t; k'’ ,t, y k”,t”).

tem of N noninteracting cells performing random walks
The only subtlety relates to coincident cell indices, and sub-
sequent time ordering. Due to this, the three-cell diagram can
take several different forms, which are shown in Fig. 5.
Again, the dashed lines are simply a bookkeeping device
reminding us that the ends of a given dashed line are to be
taken at equal times. We shall typically contract the dashed
lines, in the loop expansion, for a more compact representa-
tion.

On iterating the single-cell equation in Fig. 2 with the aid
of the two-cell equations in Fig. 3 we can insert the zeroth-
order three-cell terms from Fig. 5 where appropriate to gen-
erate a perturbative series up to and including second order
in e. Two diagrams appear at first order, and 12 diagrams at
second order. These are illustrated in Fig. 6.

The diagrams can be classified in different groypstree
diagramsii) diagrams which renormalize the cell propaga-
tor, (iii) diagrams which renormalize the chemotactic re-
sponse,(iv) diagrams corresponding to new, higher-order
nonlinear processes, aid) diagrams which, through itera-
tion, arise from groupsi)—(iv). Referring to Fig. 6, the one-
loop diagrams andb are in classe§) and(ii), respectively.

f the 12 two-l i in cl ; f
The KS equations have previously been rigorously derived§D the wo-loop diagrams, d, ande are in classv),

for a range of coupling strengths, from a stochastic mode
similar to ours, in which both the cells and the chemical
signaling molecules are described in a discrete fashion. The i

ndg are in clasgi); h, i, andj are in clasgii); k, I, andm
re in clasgiii ); and finally, diagramm is in class(iv), and

a)"LL\_* ;;.LUUJJJ +

a3
St Tt ¢

C;HW * f)‘l‘w_‘t"
) ; * ot s *

trolled approximation. It is desirable to probe the importance
of fluctuations in a systematic manner. In this section we
shall develop an exact treatment of statistical correlations
between cells within a perturbative scheme. Our perturbative
parameter will be the chemotactic coupliagwhich is pro-

portional to both the strength of response of the cells to the
chemical field, and to the rate of production of the chemical.

With the aid of the exact diagrammatic relations in Fig. 3

.
S e
we can generate a perturbative expansionddk ,t) to sec-

ond order ine. This is achieved by replacing all three-cell  FIG. 6. Diagrams contributing t8;(k) up to and including sec-
diagrams by their zeroth-order for¢oorresponding to a sys- ond order ine.
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+ %wﬂ + IW LL‘me + Q|men5|ons{d§2),thg pertqrbatlye correctpn; are not small

in the long-time regime signaling a qualitative change of

w . ;:E behavior away from diffusion. Here we exclusively focus on
2 3 A>0, which is the case of most biological relevance.

It is most straightforward to study renormalization of the

FIG. 7. Diagrams contributing to the renormalization of the cell diffusion constant by the following construction. First, we

propagator, up to and including second ordereiriThe two-loop  Laplace transform in time, i.e.,
diagrams(1), (2), and (3) are referred to in the main text as the

“necklace,” “rainbow,” and “crossover” diagrams, respectively. éR(k =L \t[éR(k t)]= fm dt e—st’éR(k t) (28)
L] - S| L] L] .
0

represents a new interaction in which “autoresponse” is mes
diated via a second cell. Many of these diagrams are familiar
from thg study of interacting Fermi systerf3,24. . ég(k,s) = (s+Dgk) ™. (29)

In this section, we shall focus on the second class of dia-
grams and investigate the effects of statistical fluctuations oPefining the renormalized diffusion constant via the property
the “renormalization” of the diffusion constant for a given that(x*)p =2dDgt for large times, we have
cell. In Fig. 7 we show those diagrams which renormalize
the cell propagator, which we denote by a double line and the Dg= lim 1 dx x2P;(x, ). (30)
symbolGg. The single-cell propagator is most easily defined o0
by generalizing to random initial conditions. One writes

hen at leading order we have

It is straightforward to show from E@30) that an equivalent
Pk 1) ] definition is
8Pi(k,0) |\

where the square brackets indicate an average over the en-, ) . . .
Semb'e Of random uncorre|ated |n|t|a| Ce” positions_ D|a_|t IS convenient to IntI’Oduce the notation COfI’eSpondlng to
grammatically one can represent the random cell position b¥d- (26):
a cross which terminates ea~ch cell propagatot=AQ. By Dg= D<F?>+ eD(R1)+ ezD(RZ)JrO(Es), (32)
differentiating with respect td?;(k,0) and averaging, it is ©
easy to see that we retain only those diagrams which renotvhere, naturallyDg’=Do. _
malize the cell propagatoThis propagator is precisely 10 proceed, we Laplace transform K@), and after in-

~ . voking the convolution theorentor Faltung theorenj25])
equal toP; for the case of a system containing only one cell

with the initial conditions specified earlier, and in which the we have

only interactions are autochemotactié/e shall describe the . @ N ) ~ ~
evaluation of the single one-loop diagram in Fig. 7 in some Gr (k,s) = Go(k,s) fdklk k1L Golk —k,)Gy(k,1)]
detail. Technical details relating to tlieather more difficult

(25 )

éﬂko:[
DR=

2 M STVEGR(K 9 lco: (31)

evaluation of the two-loop diagrams can be found in Appen- -8 k s)zf dk k-ky
dix B, and are restricted to the cased#1. o Is+n+ D,k2 + Dy(k —kq)?]’

We write

(33
Grik,t) = GR(K,1) + €GR (k1) + €GEZ'(k,1) + O(€), From the definition of the diffusion constant given in Eq.
(26) (31) we find
GO_G = 2 : S 2D, k2

whereGg'=Gy=exp(—Dok°t). The one-loop diagram in Fig. pW=_=20 3 57 (34)
7 provides the contribution d [\ + (Do + Dy)ki]

_ t v _ This integral is finite ford<2, but requires a high-wave-

G (k,t) :f dt’f dt” f digk -k Go(k,t—t") vector (“ultraviolet”) cutoff A for d=2. This uv cutoff cor-

0 0 responds to a short-distance cutoff in real space, such as the

~ R LN " cell diameter, which is assumed to be zero in our model. We
XGo(k —ky,t" =t")Gy(ky,t" = 1) Golk,1"). shall discuss short-range interactions between cells in more
(27) detail in Sec. VIII. On evaluating the integral in E@4) we

. . have the one-loop result:
It turns out that so long as>0 the perturbative corrections

to (~3R are finite in the long-time regime and serve to renor- Dr=Dg[1 - €x(d) + O(er(d)?)]. (39

malize the propagator. We shall quantify this by studying therpe d-dependent dimensionless couplings are defined via
renormalization of the diffusion constant. There are also cor-

rections which distort the Gaussian nature of the propagator, 1) = ... € (36)
but we do not consider these here. For the 0as8 in low 2\Y2(Dg + Dy)¥?’
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2 ~ 0.8
)= —"—— Ik, (37) F(3)
(Do+Dy) 06
8me\l2A 0.4
e 3) = —— 5, 38
9 30, + Dy %
0.2
where
0 . . 2z
7\ _ ( (DO + Dl) )lle. (39) "necklace" R -
N 02| ™,
Thus, we see that the diffusion constant is renormalized in all 0 \ . \ . . . . . .

dimensions to one loop in perturbation theory. The underly- "0 01 02 03 04 05 06 07 08 09 §f
ing process responsible for this is autochemotaxis, namely,
each individual cell responding to the local chemical field in  FIG. 8. The two-loop contribution to the renormalized diffusion
its environment produced by that particular cell. In tune withcoefficientF(8) vs 6=Do/(Do+D1) (solid line). The dashed lines
one’s intuition, the renormalized diffusion constant is re-show the individual contributions from the three two-loop diagrams
duced for positive chemotactic response in which the cell$§see Appendix &
are attracted to their previous emitted sig(a., the case
€>0). Dr=D([1-¢+F(8&+0(&)]. (41

It is interesting to note that the one-loop tree diagram o
(diagram a in Fig. $ gives a contribution toP; which is  The two-loop coefficient is given by
smaller by a factor of>\_t_)‘1’2 and thus does not renormalize (1- 5){ (26°+ 78~ 1)
the single-cell probability distribution in the long-time re- F(5) = 7 5
gime. In other words, the mean-field theamyhich corre- (1-H"(1+8)

sponds to the KS modehas a long-time dynamics of pure 22-8)  _,[1+& 12

diffusion, with Dg=D,, within a perturbative treatment. This + (1+ )52 sin >

is expected to break down for strong coupling, where one

finds the collapse or “blowup” phasgs]. L 4 sin‘1< 1+ 52)”_ 1
We turn briefly to the two-loop results. The motivation for 282 (1 + H)Y? 2 '

studying higher-order diagrams is to investigate whether the (42)
renormalization of the diffusion constant is still a valid con-

cept(meaning that the second-order terms yield finite contri-  This function, along with its individual contributions, is
butions fort— ), and if so, whether the sign of the correc- plotted in Fig. 8. We give here some limiting cases:

tion is positive or negative. If the latter is true, this may 2

indicate a collapse transition, in whidby becomes zero for F(5) ~ {2(1 - 5)] S 1 (43)
some finite value ot. We shall, in fact, find that the second- m? ’ '

order contribution tdDg is always positive, hinting that the

collapse transition may not occur at all for the discrete cell F(8)=0.4319..., §=1/2, (44)
system. We restrict our analysis of the two-loop corrections

to d=1, and so we use the shorthagrde(1). The dimension

3
d=1 is that in which fluctuations play the strongest role, and F(o) = 4_1(1 -0 +0(8), o<1. (45)
so, from the point of view of deviations from mean-field
theory, is expected to be the most interesting case. This ends our discussion of perturbation theory. This tech-

There are three two-loop diagrams which can renormalizgjique can be extended to study the renormalization of the

Dg, as illustrated in Fig. 7. The calculation of their individual chemotactic coupling, and this will be the subject of future
contributions is presented in Appendix B. The “necklace”work.

diagram yields precisely zero contribution, the “rainbow”
diagram yields a contribution which is either positive or
negative according to the relative sizedpfandD,, and the VI. NECKLACE APPROXIMATION

“crossover” diagram yields a contribution which is always | i | h
positive. Interestingly, the sum of the three is always posi- We now turn to an alternative closure scheme and contrast

tive, vanishing precisely in the limit db,— 0. On defining its predictions to both mean-field closure and the exact per-
the ,relative diffusion constant ! turbative results obtained in the previous section. Given the
intractability of interacting many-body systems, there has

Do been a great deal of work over the years on resummation
= Do+ D’ (40) techniques[24]. One tries to identify an infinite subset of
diagrams which can be exactly summed, thus leading to non-
we have perturbative results. The catch, of course, is that there is
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T T e Gelkes

LT e L Cofk.9 |
. e 1—eé0(k,s)fdk’(k-k’)ﬁst[é)\(k’,t)éo(k—k’,t)]

(47
FIG. 9. Diagrammatic representation of the necklace ]
approximation. On performing the Laplace transform of the product of the

bare cell propagator and the chemical Green function one
finds

often noa priori reason why summing a particular class of
diagrams is mathematically meaningful. However, it is often
possiblea posteriorito generalize the original model in such
a way as to heavily weight the chosen subset of diagramsyhere
thereby giving a limit in which the resummation is exact and >T-d2
allowing one to better understand the physicalbiologica) Des(K,S) = Do{ 1 —E(d)[l + S + (L)%} }
basis of the nonperturbative results. These resummation tech- N Do+Dy/ A
nigues have proven to be an invaluable tool in nuclear and (49)
statistical physics, prime examples being the “langep-
proximation”[26], the “parquet approximatior[27], and the ~ with €(d) as given in Eqs(36)~38).
“planar approximation’[28]. We shall examine one of the From the definition of the renormalized diffusion coeffi-
simplest such resummation schemes for our model of ceient given in Eq(31) it is straightforward to show that
movement, namely the “necklace approximatiof29], _ ~
which is akin to the Hartree-Fock approximatif]. Dr=D[1 ~€(d)], (50
Referring to the diagrammatic expansion for the cellwhich is identical to the one-loop perturbative result. In other
propagatolFig. 7) we notice that the first two-loop diagram words, within the necklace approximation there are no con-
resembles a “doubled” version of the one-loop diagramtributions to the renormalized diffusion constant from loop
Clearly, at third order there will be a diagram with three diagrams higher than the first. Clearly, the renormalized dif-
sequential loopgor “bubbles’). If we focus on only these fusion constant will be zero at a critical value of the chemo-
“bubble” or “necklace” diagrams, then we can interpret thetactic coupling defined b§.(d)=1. For values of the cou-
resulting infinite perturbation expansion as a geometric sepling larger than this critical value the renormalized diffusion
ries, which allows us to exactly resum all such diagramsconstant becomes negative, indicating that the necklace ap-
This strategy is illustrated diagrammatically in Fig. 9. proximation breaks down, and the cell density becomes infi-
Although it is an unjustified approximation to keep only nitely peaked at a single point. This is analogous to the
necklace diagrams within the current model, one can con<plowup” phase in the KS equatior].
sider more ComplicatEd models for which this apprOXimaﬂon Precise|y at the critical point one m|ght expect some

would be reasonable. On comparing the two-loop necklac@nomalous scaling behavior. This is indeed the case. Setting
diagram to the rainbow and crossover diagrafig. 7), one  %d)=1 we have from Eq(49)

sees that the latter diagrams would be less important in a

model which included a refractorgor “recovery” time for _ dDy Dy 2

the cell subsequent to emitting a chemical signal. Similarly, Dei(k.9) 2N\ st Do+ DlDok k (51)

the necklace diagrams are precisely appropriate for a model 5 , )

in which the cell can emit one signal only between receptiofVhere we have takes/ A <1 andDgk“/\ <1 consistent with

events of incoming signals. probing the long-time, large-distance scaling behavior of the
The self-consistent equation for the single-cell propagatofyStém. Inserting this form into the propaga(é8) we find

which arises from the necklace approximation may be writ:S~ K" Thus, the scaling behavior of the propagator at the

Gr(k,S) =[5+ Deg(k, 9K, (48)

ten as critical point is given by
o d Dl -1
Gr(K,9) = | s+ —————(Dok??| . 52
o - ) (k.9 [ 2Dy D, 20 )} (52
Gr(k,t) = Go(k, 1) + Efo dt’GO(k’t_t’)L dt’ f dk’ This indicates a subdiffusive spreading of the single-cell dis-
tribution function with a dynamical length scalé)~ t*/4.
x (K -k’)(~3}\(k’,t’ —t”)(~30(k -k't' -t This result holds in all dimensions.
- This anomalous scaling behavior, although interesting,
X Gr(k,t"). (46)  has a serious flaw. The single-cell distribution function,

which is equivalent to the renormalized propagator, is a non-

negative quantity. However, on performing an inverse
This equation can be solved by Laplace transforming in timeLaplace-Fourier transform of E@52) we find a propagator
and one finds which decays with distance in an oscillatory manner, becom-
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ing negative in some regions. This indicates that the necklace Numerical iteration of Eq(53) proceeds by performing a
approximation produces unphysical results at the criticabliscretized version of the time integral using the previous
point itself, and one must therefore view the critical scalingcell positions and thus calculating the new cell velocity. This

behavior found above with caution. is used to predict the new position of the cell. A given noise
history &(t) defines one realization or “sample.” The dynami-
VIl. NUMERICAL ANALYSIS cal fluctuations tend to be very large, and so heavy sample

Numerical simulation of chemotaxis via individ al_b(,jsedaveraging is required to produce statistically smooth data.
umer imutatl XIS via Individu We have used POsamples to generate the data described

tcr?” s!gnallllng h(?sl proven(jto bg a f}ﬁ!’““v'a' tasvlt/, ef\:en V\:"th'naelow. This large but finite number of samples will lead to a
€ Simpie Models considered In this paper. We have foun ampling error of approximately 1% which is consistent with

strong dependence of the large-scale, long-time dynamics e scatter of points in Figs. 10 and 11. We have not shown

microscopic de_talls of the algorithms, such_as Wh_ether th%rror bars on these figures, as the sampling error is indepen-
cell is constrained to move on an underlying lattice, anddent ofe

whether the chemical field is modeled as a continuum con- We have examined the long-time behavior of the cell for a

centration as opppsed to an ensemble OT dis_crete .dim.JSin\%ide range of values of. In the data presented here we have
molecules. A detailed survey of our numerical mvesUga‘uonsnXed the other parameters at the vali®s=D;=1.0 and\
into these issues is currently in preparatif80). For the =0.05. The time step is chosen to Be=0.2 wlhich is small

purposes of the current paper, we W'S.h to compare our mo%tnough to ensure numerical stability, but not so small as to
robust numerical results with the predictions of the perturba- rohibit long-time simulations for the necessarily large num-

tion theory and necklace approximation described in Secs. @er of samples. For all values efthat we have studied the

and V1. This numerical work has been confined to the SIM g asymptotically performs diffusion, in the sense that its

Plest case of a single cell using autochemotaxis to move IIgpatial variance increases linearly with time. We measure the

one spatial dimension. . e . .
. . . . . effective diffusion coefficient by extracting the slope of the
We dispense altogether with an underlying grid by bas'n%ariance-time curve for large )t/imetse (209200 suc% that

our numerical a}lgorlthm_on the Langew_n eqqat@) and transient behavior from the time scalexliias died away. We
the accompanying solution of the chemical diffusion equa;

. . . ; o have explored other values for the bare diffusion constants,
tion (6), in which the chemical concentration field has been . . : e )

S . . and consistent behavior of effective diffusion is observed in
explicitly integrated using the Green functi@,. On per-

forming the spatial integral over thifunction in Eq.(6) and all cases. In particular, we find an effective diffusion coeffi-
) 1g the Sp 9 oo q._ cient consistent with Eq(55) for the case ofD,=0.1 and
inserting into Eq.(1) we have(on specializing tad=1 and

setting the index=1 since we deal here with a single gell D;=1.0(note, the. cas®o<D; Is relevant to many systems
of aggregating microorganisms

_ t One subtlety in applying this algorithm is the apparent
X, (1) = &) + Ef dt'H\(x () =% (t'),t=t'),  (53)  divergence at the upper limit of the time integral in E8Q).
0 Numerically, this is handled by integrating only up to the

where the functiorH, is simply the spatial derivative @@,: ~ time step before the current time. One can show that this
introduces an error dD(4t) in the estimate for the diffusion

X X2 ) coefficient. We have explici i
— - _ e . plicitly calculated the propagation of
D) = 4G\ A(wD33)Y2 exp( M 4Dqt/)" this error into the first-order prediction of the renormalized
(54) diffusion constant, and we find
Thus, we need only track the history of the cell positit). Dr=Dq[1-&+O0(&)], (55

The chemical field is not explicitly evaluated in the simula-
tion. This algorithm is easily extended to multiple cells and
higher dimensions. The CPU time scales\afor N cells (if R _ St\ 12

one uses neighbor tablesnd naively scales ad? for simu- e(ot) = 6[1 - 2(7) ] ' (56)
lations over a temporal duratids M &t. In fact the CPU time

scales linearly wititM so long as\ >0, since the exponential with the dimensionless coupling constat’€(1) defined in
decay contained with the kernel of E(3) allows one to  Eq.(36). Naturally, the prediction obg for nonzerost given
restrict the time integral to the rangee (t—K/\,t), where  in Eq. (55) agrees with our perturbative result in E§5) as

the parameteK is typically taken to beK=3. We have ex- & —0.

plicitly checked the validity of this truncated interval by In Fig. 10 we plot the measured values Df from our
comparisons with simulations in which the entire cell historysimulations along with the first-order perturbation theory
is retained. Note that algorithms which explicitly integrate prediction(55). The agreement is very satisfactory. It is not a
the chemical fields on a grid of linear sizehave an associ- simple matter to test the second-order perturbation theory
ated CPU time which scales &8 and thus become progres- predictions sincg) the tedious integrals evaluated in Appen-
sively less efficient for higher dimensions. This disadvantagelix B need to be reevaluated for a fini® and(ii) higher-

is compounded by the more serious problem of numericaprecision data are required to test the second-order effects,
artifacts introduced by the presence of an underlying gridneaning another order of magnitude of computing time. We
[30]. also show the effective diffusion constant as measured from

where
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. . ~ FIG. 11. Numerically measured values of the renormalized dif-
FIG. 10. Numerically measured values of the renormalized dif-fusion coefficient for larger values af which lie beyond the per-
fusion coefficientDg, versus the chemotactic coupliegicorrected  tyrbative regime, plotted on a log-log scale. The solid line has a

for nonzerodt; cf. Eq.(56)] for a single celi(white triangle com-  gjope of -2 and is a guide to the eye, showing the approximate
pared to the first-order prediction of perturbation the@y) (solid relationshipDg~ € 2.

line). We also show the measured valuedDegf from integration of

the KS equationgblack triangley compared with the mean-field hemical Such | hani b
prediction(dashed ling The small disparity is due to “numerical ous chemical cuefl]. Such complex mechanisms are be-

diffusion” which results from the spatial discretization of the KS y‘?”d the scope, and perhaps the spirit, of the current model.
equations. Given the phenomenological nature of the model, we wish to

add biological complexity in as simple a manner as possible,
while maintaining biological “plausibility.” Two important

e . : - - short-range interactions that can be described in this manner
diction from perturbation theory is thaDg=Do, within are finiteness of cell size, and cell-cell adhesion. Both may

mean-field theory, since the diffusion constant is only renory, : - - : -
. . ) C e described by introducing an effective short-ranged inter-
malized by statistical correlations. This is borne out by the y 9 9

. : . ) : cellular potential V(|x;—x;|). A schematic form forV is
simulations. For our integration algorithm, we have used hown in Fig. 12. The potential is characterized by two
recently developed method which has been shown to havl%ngth scales: the. diameter of the calland the range of
higher precision than conventional “upwind” methd@4]. i

The very weak dependence Bf, on e, from integrating the extension of cell-cell adhesion~ 2a. There is also an en-

. . R e SR . ergy scaledV giving a measure of the strength of adhesion.
KS equations, is due to numerical diffusion which is an in- The inclusion ofV in our original model leads to the
escapable consequence of integrating adveCtion_diﬁUSiofblIowing system of equations for the cell positions:
equations on a grid. The numerical diffusion can be made '
increasingly smaller by decreasing the grid size. X =&+ aVip— > ViV(|x; - xi), (57)

We have also studied the behavior of the cell variance for j#i

larger values of which lie beyond perturbation theory. We
find no sign of a collapse transition in contrast to the predic
tions of the necklace approximation. The cell is always ob
served to perform effective diffusion for large times, and the
renormalized diffusion constant tends to zero approximately
asDg~ €2 (Fig. 11). This result is consistent with the pre-
diction from a strong-coupling approach to auto-chemotaxis
[32] based on an asymptotic analysis of the Langevin equa- V()
tion (1), the details of which lie beyond the scope of this
paper.

integrating the Keller-Segel equatiofZ?) and(24). The pre-

Wwhere¢ still satisfies the diffusion equatia®). In the above
‘equation, the vectox; denotes the position of the center of
mass of celli. We have assumed a spherically symmetric

VIIl. SHORT-RANGE INTERACTIONS

The model as presented has treated the cells as point “par-
ticles” with no spatial extent and/or internal structure. In or-
der to confront the model with biological reality, be it in the
context of social amoeba or embryonic cell clusters, it is
crucial to introduce smaller-scale interactions. Certain of 0 Tos 1 15
these interactions are truly intracellular and require complex
additional models for their description, examples being actin  FIG. 12. Schematic of the intercellular potenti&lr) showing
filament assembly to describe the details of cell motility, orshort-range repulsion and weak attraction, with strerfyttover a
signaling pathways regulating the reaction of the cell to vari-range of approximately one to two cell diametars

rfa 2
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potentialV identical for all pairs of cells. Naturally, both of tion for the single-cell PDIP; [Eqg. (9)] contains the two-cell
these assumptions can be relaxed when necessary. It is evBBF P; ;. This is the tip of an infinite hierarchy of multicell
possible for the potential to have a functional form dictated PDF’'s and is typical of interacting many-body systems.
by the local configuration of neighboring cells. This is an In Sec. Ill we described a diagrammatic representation of
interesting direction to pursue, as it would allow nontrivial the PDF’s. Exact diagrammatic relations were derived for
cell shape deformations to be modeled in a self-consisterftingle-cell and two-cell PDF'¢Figs. 2 and ® With the aid
manner. of these relations, we derived the diagrammatic perturbation
Much of the foregoing analysis, based on probability dis-theory forP; to two loops(i.e., up to and including terms of

tributions and diagrammatics, may be developed to includéecond Orde‘Ir. in the chebmot?ctlic couplia)ghThe tWO'cl;?OP
the potentiaV. We shall content ourselves here with a brief 9/agrams fall into a number of classes, such as tree diagrams,

description of mean-field theory In a similar manner to the_renormalization of the single-cell propagator, and renormal-

e . . . . ization of the chemotactic coupling. A diagram also arises
ﬂe\rllvveaf‘li(r)wz of the equation of motion fé#(x,t) given in Sec. which lies outside the “dressed” mean-field theory, and

which shows single-cell diffusion mediated by two-cell in-
4P, = DgV2P, teractions_(Fig. 6, diagrarr_n). The hierarqhy of PDF’s can be
. brokeln st:m[()jl.y atdf[he f;rsg tllev?l by ;n:posmgi%\;Pin; !
, , , , namely, iscarding statistical correlations between cells.
—eV f d’ fo dtIVG (x—x",t-1)] In Sec)./ IVythis mean-?ield approximation was shown to lead
exactly to the deterministic Keller-Segel equations of chemo-
XE P (X, tx' ) tactic aggregation22) and (24), which provides a useful
i ’ benchmark for our model.
In Sec. V we analyzed the stochastic theory exactly within
+V -fddx’[VV(|x—x’|)]E P (X, X/, 0). (58)  perturbation theory. We concentrated on calculating the
[ renormalization of the cell diffusion coefficient, and pre-
: , L sented results to first order infor dimensiongd=1, 2, and 3
Applymg the mgan-ﬂeld approximatior,; =P;P; and sum- [Eg. (35)], and to second order iafor d=1 [Eq. (41)]. We
ming the equation over the cell indéxwe find a self-  egyricted our analysis of the second-order effectsi+d
consistent equation for the cell densifx, t): since this is the case in which the strongest corrections to
mean-field theory are expected. The first-order corrections to
ap=DoV?p+ V -pV f ddx’lV(|x -Xx')p(x’,t) D, are proportional td—e), which is to be expected: e.g., for
positive chemotaxis it is intuitive that the cell is attracted
t somewhat by its own signal and is consequently reduced in
—sJ dt’GA(x—x’,t—t’)p(x’,t’)]. (59 its diffusive ability. Interestingly, the second-order correc-
0 tions are proportional t¢+€?), the sign remaining positive

Interestingly, this equation, in the absence of the chemotactitor all values of the other model parameters. This hints that
term, has been recently introduced within the context of soPOSitive autochemotactic interactions are not strong enough
cial dynamics, with application to phenomena such ado reduce the renormalized conclusion is borne out from the
“swarming” [33,34. Deviations from mean-field theory will results of a careful numerical analysis. We stress that the
be less severe in the absence of long-range chemical interaf@sults described above hold when the chemical field has a
tions, since the nonlinear potential term is local in time. OngNonzero decay rat#. If A=0 then the perturbation theory

can show that statistical correlations will not lead to a renordiverges fort—c, signaling a different type of dynamics—
malization of cell diffusion through short-range cell-cell in- €ither autochemotactic collapse or anomalous diffusion. Nu-

teractions. merical work on a related discrete model suggests the latter
[30]. This case can in principle be studied within a renormal-
ization group calculation, perturbatively about two dimen-
IX. DISCUSSION AND CONCLUSIONS SIons. _ .
An alternative closure scheme to mean-field theory,
We have introduced and analyzed a stochastic individualnamely, the necklace approximation, was explored in Sec.
based model of chemotactic cell movement. In this prelimi-VI. Although an uncontrolled approximation within the cur-
nary work, we have focused on a single cell type with arent model, this closure scheme would be appropriate for a
single chemical signaling field, which may be used either forspecific model in which cells have inhibited ability to relay
positive(aggregatingor negativg(repelling chemotaxis. As  signals before responding to a prior signal. The necklace
discussed in Sec. I, the model consists of a séfl @fange-  approximation leads to an analytically tractable theory for
vin equationg1) for the dynamics of the positions of tid  single-cell autochemotactic response. We found that the ex-
cells, along with a continuum diffusion equation for the act one-loop perturbative result for the diffusion coefficient
chemical field(3). This representation allows intuitive model is exact to all orders within this approximation scheme. It
building and the extraction of efficient numerical algorithms.follows that the cell becomes immobile for values of the
However, for mathematical analysis, it is convenient to de{positive) chemotactic coupling above a critical value. Pre-
scribe the dynamics of the system in terms of multicell prob-cisely at the critical point we showed that the cell wandering
ability distribution functions(PDF’s). The equation of mo- is anomalous, with the root-mean-square spatial deviation of
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the cell increasing subdiffusively a&'%. These results are efficient for such tasks as they can be realistically applied to
applicable in all dimensions, although some doubt is cast otarge cell numbers in three dimensions.
their validity by the nonpositivity of the density at the critical  |n conclusion, we have presented a preliminary analysis

point. ) ) o of statistical correlations in multicellular systems. Our theo-
Our main results on the perturbative renormalization Ofygtical framework resembles the many-body theory used to
the cell diffusion coefficient due to autochemotactic respons

were carefully checked by numerical integration of the(fgtUdy interacting systems in condensed matter, nuclear phys-

theory (Sec. VII). Very satisfactory quantitative agreement ics, and the liquid state. Nontrivial compl'ications.in cellglar
with the perturbative results was found for small coupling.SyStems stem from memory effects built into the interactions
The strong coupling limit was also explored yielding a Via the diffusing signaling fields. Strongly interacting cell
smooth decay of the renormalized diffusion coefficient withsystems abound in nature. Some, such as biofiBé§ are
increasing positivee. The numerical results indicatBg important from the biotechnical and bioengineering perspec-
~ €2 for large e>0. This result is consistent with prelimi- tives; while others, such as aggregating amoebas, Dic-
nary calculations from a strong coupling analysis, the detailsyostelium [3] and early embryog8], are central to our un-
of which will be given elsewhere32]. Our numerical derstanding of the evolution of organisms and associated
scheme, derived from the Langevin representation of the,ndamental issues of development. Our long-term aim is to
model, is “off lattice” and requires knowledge of only the ;se the theory developed in this paper as a framework for the
;ﬁlé pigsi'z]orl‘s' The cht'amuk:]al f'?'d IIS F‘Ot expllcnly mtegfrfatgd, study of these more complex systems. There is no limitation

P e_mented_ In the simulations via exact di USIVEn the number of cell types and signaling fields which may
Green functions. This allows high-speed integration of theDe incor . i

porated into this framework. However, we have

model and is ideal for cell simulations in higher dimensions, .
since the efficiency of the algorithm depends only on theshown that even the simplest case of one cell type and one
number of cells—not on the dimension of space chemical field possesses nontrivial dynamics due to strong

Finally, in Sec. VIl we examined a biological weakness statistical correlations. These correlations are a general con-

of the original model, that being the treatment of cells asSéquence of motile agents which respond to a complex envi-

point particles. The finiteness of the cell diameter, along witfonment that they, themselves, have produced.

short-range intercellular adhesion interactions, were shown

to be easily incorporated into the Langevin framework via an

“effective intercellular potential.” We restricted our analysis ACKNOWLEDGMENTS

of this term to mean-field level, within which we showed that

our stochastic model becomes equivalent to nonlinear “social |t is a pleasure to thank Alan McKane, Hans Othmer,
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there are numerous avenues for future research. In the Sh%ﬂatefully acknowledge partial support from the N&Frant
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ization of the chemotactic coupling, such terms arising
from certain two-loop diagrams discussed in Sec. V. It would
also be interesting to use perturbative renormalization group
methods to calculate the anomalous single-cell distribution
function in the casa =0. In terms of strong coupling meth-
ods, given the weaknesses of the necklace approximation, it ) ) ) ) )
is worthwhile exploring alternative resummation schemes. Ve give here a brief guide to the use and interpretation of
Along these lines, we have been developing a strong COLg!agrams for those readers whq are _unfamlha_lr with this pech-
pling method based on asymptotic analysis of the formalidue. The rationale for ernploy'lng'd]agrams is twofold: first,
solution to the Langevin equatia®3), the results of which diagrams aIIO\_N one Fo gain an mtufuye sense of the structure
will be discussed elsewheri@2]. In the longer term, it is ©Of @ theory(since pictures are easier to comprehend than
important to make contact with more biological examples.ntégral; and second, the logical structure of diagrams en-
This necessitates more complicated models, but such modei®'es lengthy calculations to be performed in a far more ef-
can still be constructed using the methods outlined here. Twécient manner. , _ ,
examples which introduce only modest complications and ' this appendix we will present two of the diagrammatic
which may be analytically tractable a(® aggregation of steps of the paper in detail. This _should allow the reade_r to
cells in the presence of two chemical fields: a chemoattrad:€construct the other numerous diagrammatic manipulations
tant and a degrading enzyrni@], and(ii) an interacting sys- W€ have used. We alsc_) refer the reader to the tr—_gxtbook of
tem of bacterial prey and predating amodB For truly Matty(;k[24] fqr a goc_>d introduction to the use of dlggrams,
complex situations, such as processes occurring in the earf/Peit in the distinct field of condensed matter physics.
embryo, the formalism introduced here is still appropriate, Consider the formal solution Eq13) to the equation of
but must be implemented via numerical algorithms. We aremotion (12) for the probability distributionP;(k ,t), which
hopeful that algorithms based on E@3) will be highly  we repeat below:

APPENDIX A: A GUIDE TO THE DIAGRAMMATIC
REPRESENTATION
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i — kK ; k k-k; k
¢ = kKt 7 7
R RO L “W‘ ’
t” ’
k,
i _D t” . i _ D (el 15’ . . . .

— o “h&b, >0 =Bk 3kt FIG. 14. The one-loop necklace diagram with explicit labeling.

p ! Using the key from Fig. 13, the reader will be able to reconstruct

W = eBELr) ey =Gk Eq.(27)

t”

_ _ _ _ here their evaluation. We shall work exclusively in one spa-
FIG. 13. The diagrammatic representation of E&fl) with ex- tial dimension for the reasons given in Sec. V.
plicit labeling of times and wave vectors. An explicit key relating

the diagrammatic elements to the underlying propagators and prob-
ability distributions is given within the boxed area.

We write the two-loop correction téR(k,t) as

G2k 1) =Sk, t) + So(k,t) + Sa(k ), (B1)

t
Pi(k,t) = Go(k,t) + Sf dt'Go(k,t—t') whereX,, refers to the two-loop diagrams in Fig. 7, which in
0 order, we refer to as the “necklace diagraifmi=1), the
“rainbow diagram”(n=2), and the “crossover diagranth
=3). Likewise, we break the two-loop contributionby into
three parts:

t’ ~
xJ dt”Jdk’(k k)G (k',t" = 1")
0

XD Pij(k =k’ t";k",t"). (A1)
j D@(k,t) = Ay + Ay + Ag, (B2)
We can represent this equation in diagrammatic form by de-
fining a “key” in which the Green functions and probability where, from Eq(31), we have
distributions are written uniquely in terms of diagrammatic 1
elements. This key and the diagrammatic form of EA&fl) Ap=—ZlimsA 23 (K,S) Jkeo- (B3)
are given in Fig. 13, where we have labeled each element of 250
the equation in detail. Time flows from right to left within
each term of the equation, and wave veciaviose flow is  In terms of the dimensionless couplifeg'€(1) (36) the co-
indicated by the arrowsare conserved at each diagrammaticefficient of the two-loop contribution tB can be written as
vertex. All dummy variables are to be integrated over the[cf. Eq. (41)]
allowable range; e.g., the varialifeis to be integrated from
0 to t. One must be careful to remember the wave vector F(8) =F1(8) + Fo(8) + F5(6), (B4)
weight(k -k”) at the vertex between the chemical propagator
(wavy line) and the outgoing cell diffusion propagaidaint  where we extract the individual contributions via
line). Once the diagrammatic rules are familiar it is no longer
necessary to explicitly label the equation, and then one draws e \2A,
Fig. 13 in the reduced form given in Sec. (Fig. 2). Fn(0) = (:) D.°
The diagrammatic derivation of the perturbation theory & 0
g;%sgnitr?\(/joll?/e':slgdi?efé?r:utgsiiizggay ;”E%F_’Sg lffgd;?g'_:'g,séi’d%e now sketch the computation of these three contributions
further substitution of the various combinations from Fig. 5to F(9).
into the resulting diagrammatic equation. Only the topology
of a diagram is relevant, and so although one may find rather 1. The necklace diagram
“messy” diagrams after the substitutions outlined above, one
can redraw such diagrams, carefully preserving their topol-
ogy, until one finds a systematjand aesthetically coherent
form. Such a form varies with taste—the authors find the < —A 3 2
form of the diagrams in Fig. 6 quite satisfactory. Z1(k:8) = Golk,9) fdklf diekkakz
After perturbation theory has been performed using dia- 5 —_—
grams, one needs to unwrap the diagrams as integrals, so as X[s+ N+ D1k + Dok —ky)°]
to mathemapc.:ally evalluallte their contrlbutlon_. We present X[s+\ +Dyk3 + Do(k — kp)?] 7. (B6)
here an explicit transcription of the one-loop diagram in Fig.

7, by redrawing this diagrarFig. 14) in the explicit repre-  No explicit evaluation is necessary due to the explicit factor

sentation. Given the key in Fig. 13, the transcription shoulcbf k2. In the limit dictated by Eq(B3) we find A;=0 and
be clear, yielding Eq(27) in the main text. thusF;=0.

(BS)

Laplace transforming in time we have

APPENDIX B: TWO-LOOP CONTRIBUTIONS TO Dg

. . . 2. The rainbow diagram
There are three two-loop diagrams which contribute to the mbow clag

renormalization of the cell diffusion constant. We summarize Laplace transforming in time we have

051916-13
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S,(k,9) = Gy(k,9) f dk, f dkokkko(k = ky) Sa(k,9) = Gy(k,s)? f dk, f dky Kk; ko(k = ky)
X[s+\+ leg +Do(k—ky)?]? X[s+ N+ lei +Dg(k— k)2t
X[s+ 2\ + Dy(K3 + K3) + Do(k — ky — k)] 7. X[s+ N\ + D1k + Do(k = k)2
(B7) X[s+ 2\ + Dy(K2 + K3) + Do(k — ky — kp)?] 2.
The denominators are exponentiated using the integral rep- (B1Y)
resentation:

As for the rainbow diagram, the denominators are exponen-
o tiated using the integral representati@8) which allows the

B¢=[I'(¢)]™* f da a?te™B, (B8)  wave vector integrals to be straightforwardly evaluated. On
0 differentiating twice with respect t& and taking the limit

This allows the wave vector integrals to be straightforwardlydictated by Eq(B3) we find

evaluated via completing the square. On differentiating twice Do * (" W _2
with respect tc and taking the limit dictated by E¢B3) we Ag= —g,f da€ af db e f dce”
find 8m\(Dy+ D)%), 0 0
D o o % a+2c
A, = 0 f d —af db ~2b _ 213/2
2= 8an(Do+ Dy, aae . e [(@a+c)(b+c) - 8]
36c(a+c)(b+(1-9d)c
e P ST SrrcreR (512
bYqa+(1-)b? [a+(1-6)b]>?]’

(B9) The evaluation of this triple integral is straightforward but
tedious, and gives a contribution ki) of the form
with & as given in Eq(40). The evaluation of this double 1 (1-6)2 28 1+ 2\12
integral is straightforward but tedious, and gives a contribu-F,(8) = — + sin‘l( )
g J ? R N TR IR

tion to F(6) of the form 2
_ 2\ 12
1] (1-8)28*+8+68°+65-2) (L 5)[ 4 '-1(1+ ) —1”.
Fa(&) = ;{ =P+ 2P MY 2 TR
, 22-35- 2 _1<1+ )1/2 ®10 | | (B13)
(1+ 552 sin 2 - The forms ofF, (n=1,2,3 along with their sunf(5) are

plotted in Fig. 8 in the main text. It is interesting to note that
for & close to unity the contributions from the rainbow and
crossover diagrams have different signs, but conspire to give
a sum which is positive, albeit vanishingly small in the limit
Laplace transforming in time we have o—1.

3. The crossover diagram
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